首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Plant cells have been demonstrated to be an attractive heterologous expression host (using whole plants and in vitro plant cell cultures) for foreign protein production in the past 20years. In recent years in vitro liquid cultures of plant cells in a fully contained bioreactor have become promising alternatives to traditional microbial fermentation and mammalian cell cultures as a foreign protein expression platform, due to the unique features of plant cells as a production host including product safety, cost-effective biomanufacturing, and the capacity for complex protein post-translational modifications. Heterologous proteins such as therapeutics, antibodies, vaccines and enzymes for pharmaceutical and industrial applications have been successfully expressed in plant cell culture-based bioreactor systems including suspended dedifferentiated plant cells, moss, and hairy roots, etc. In this article, the current status and emerging trends of plant cell culture for in vitro production of foreign proteins will be discussed with emphasis on the technological progress that has been made in plant cell culture bioreactor systems.  相似文献   

3.
Plants may serve as superior production systems for complex recombinant pharmaceuticals. Current strategies for improving plant-based systems include the development of large-scale production facilities as well as the optimisation of protein modifications. While post-translational modifications of plant proteins generally resemble those of mammalian proteins, certain plant-specific protein-linked sugars are immunogenic in humans, a fact that restricts the use of plants in biopharmaceutical production so far. The moss Physcomitrella patens was developed as a contained tissue culture system for recombinant protein production in photo-bioreactors. By targeted gene replacements, moss strains were created with non-immunogenic humanised glycan patterns. These were proven to be superior to currently used mammalian cell lines in producing antibodies with enhanced effectiveness.  相似文献   

4.
The use of plants for production of recombinant proteins is becoming widely accepted. More recently, plant cell cultures have been proposed as valuable systems for producing a wide range of biologically active proteins. Such systems provide certain advantages over whole plants, but yields are still considered a limitation. In this study we established a Medicago truncatula cell suspension line expressing phytase from Aspergillus niger. Phytase is an N-glycosylated enzyme that breaks down indigestible phytate, resulting in an increased availability of phosphorus and other minerals in monogastric animals and reduced levels of phosphorus output in their manure. Various production systems have previously been used to express heterologous phytase, including several plant species. In this work, remarkable amounts of enzymatically active recombinant phytase were produced and secreted into the culture medium. Recombinant phytase accumulated to at least 25 mg/L and remained stable along the growth curve, and an enriched fraction with high enzymatic activity was easily obtained. We therefore propose M. truncatula cell suspension cultures as a potential system for the production of recombinant proteins. Most importantly, we have shown that, contrary to general belief, it is possible to achieve high levels of a functional recombinant protein in plant cell culture systems.  相似文献   

5.
A review of over 15 years of research, development and commercialization of plant cell suspension culture as a bioproduction platform is presented. Plant cell suspension culture production of recombinant products offers a number of advantages over traditional microbial and/or mammalian host systems such as their intrinsic safety, cost-effective bioprocessing, and the capacity for protein post-translational modifications. Recently significant progress has been made in understanding the bottlenecks in recombinant protein expression using plant cells, including advances in plant genetic engineering for efficient transgene expression and minimizing proteolytic degradation or loss of functionality of the product in cell culture medium. In this review article, the aspects of bioreactor design engineering to enable plant cell growth and production of valuable recombinant proteins is discussed, including unique characteristics and requirements of suspended plant cells, properties of recombinant proteins in a heterologous plant expression environment, bioreactor types, design criteria, and optimization strategies that have been successfully used, and examples of industrial applications.  相似文献   

6.
“Molecular farming” in plants with significant advantages in cost and safety is touted as a promising platform for the production of complex pharmaceutical proteins. While whole-plant produced biopharmaceuticals account for a significant portion of the preclinical and clinical pipeline, plant cell suspension culture, which integrates the merits of whole-plant systems with those of microbial fermentation, is emerging as a more compliant alternative “factory”. However, low protein productivity remains a major obstacle that limits extensive commercialization of plant cell bioproduction platform. This review highlights the advantages and recent progress in plant cell culture technology and outlines viable strategies at both the biological and process engineering levels for advancing the economic feasibility of plant cell-based protein production. Approaches to overcome and solve the associated challenges of this culture system that include non-mammalian glycosylation and genetic instability will also be discussed.  相似文献   

7.
8.
Low production cost is a key factor driving the development of plants and plant tissue cultures for the synthesis of therapeutic and other foreign proteins. Because product yield and concentration exert a major influence on process economics, improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems. Strategies aimed at increasing transgene expression have been effective; however, a critical but poorly understood factor contributing to low foreign protein yield is post-synthesis and/or post-secretion instability and degradation. Loss of foreign protein as result of biological and physical processes such as proteolytic destruction and irreversible surface adsorption can occur in plants and plant culture systems. This review highlights the need to consider such mechanisms and outlines a range of remedial strategies aimed at minimizing foreign protein degradation and loss.  相似文献   

9.
Despite significant efforts over nearly 30 years, only a few products produced by in vitro plant cultures have been commercialized. Some new advances in culture methods and metabolic biochemistry have improved the useful potential of plant cell cultures. This review will provide references to recent relevant reviews along with a critical analysis of the latest improvements in plant cell culture, co-cultures, and disposable reactors for production of small secondary product molecules, transgenic proteins, and other products. Some case studies for specific products or production systems are used to illustrate principles.  相似文献   

10.
Plants are attractive expression systems for the economic production of recombinant proteins. Among the different plant-based systems, plant seed is the leading platform and holds several advantages such as high protein yields and stable storage of target proteins. Significant advances in using seeds as bioreactors have occurred in the past decade, which include the first commercialized plant-derived recombinant protein. Here we review the current progress on seeds as bioreactors, with focus on the different food crops as production platforms and comprehensive strategies in optimizing recombinant protein production in seeds.  相似文献   

11.
12.
Agroinoculation transient expression systems are commonly accompanied with elevated pathogenesis-related (PR) protein production and leaf necrosis. We identified the major PR proteins in Nicotiana benthamiana in response to agroinoculation and determined that their occurrence was mainly due to agrobacterium infection and the method of inoculation, rather than due to viral vectors overexpressing foreign proteins. A spray-on inoculation method was optimized in this research and used to obviate the leaf necrosis and PR proteins induced by agrobacterium. Subsequently, this method also increased the yield and purity of the protein-of-interest. A further investigation of PR protein induction by a necrosis-inducing protein, Jun a 1, suggested that the plant pathogenic response was related to biochemical integrity of plant cell wall, which was also confirmed by an osmo-stabilizing mannitol ex vivo culture experiment. These findings provide insight into the response of plants to agroinoculation and suggested a connection between cell wall weakening and PR protein elicitation.  相似文献   

13.
植物生物反应器研究现状、瓶颈及策略   总被引:4,自引:0,他引:4  
近10年,植物作为重组蛋白生产系统是生命科学中研究最活跃领域之一。植物系统具有低成本、安全和易规模化优势,其表达生物活性药用蛋白能力已被许多研究所证实;同时,植物药用蛋白产品还表现出潜在的市场和广阔应用前景。鉴于此,回顾了植物生物反应器兴起,介绍了植物表达系统和重组蛋白研究现状,综述了植物生物反应器面临瓶颈问题、解决对策和未来一段时间内研究热点;在展望植物生物反应器前景同时,对我国研究现状、与国外差距和未来发展应采取策略进行了讨论。  相似文献   

14.
Ko K  Ahn MH  Song M  Choo YK  Kim HS  Ko K  Joung H 《Molecules and cells》2008,25(4):494-503
Many therapeutic glycoproteins have been successfully generated in plants. Plants have advantages regarding practical and economic concerns, and safety of protein production over other existing systems. However, plants are not ideal expression systems for the production of biopharmaceutical proteins, due to the fact that they are incapable of the authentic human N-glycosylation process. The majority of therapeutic proteins are glycoproteins which harbor N-glycans, which are often essential for their stability, folding, and biological activity. Thus, several glyco-engineering strategies have emerged for the tailor-making of N-glycosylation in plants, including glycoprotein subcellular targeting, the inhibition of plant specific glycosyltranferases, or the addition of human specific glycosyltransferases. This article focuses on plant N-glycosylation structure, glycosylation variation in plant cell, plant expression system of glycoproteins, and impact of glycosylation on immunological function. Furthermore, plant glyco-engineering techniques currently being developed to overcome the limitations of plant expression systems in the production of therapeutic glycoproteins will be discussed in this review.  相似文献   

15.
Molecular farming of pharmaceutical proteins   总被引:38,自引:0,他引:38  
Molecular farming is the production of pharmaceutically important and commercially valuable proteins in plants. Its purpose is to provide a safe and inexpensive means for the mass production of recombinant pharmaceutical proteins. Complex mammalian proteins can be produced in transformed plants or transformed plant suspension cells. Plants are suitable for the production of pharmaceutical proteins on a field scale because the expressed proteins are functional and almost indistinguishable from their mammalian counterparts. The breadth of therapeutic proteins produced by plants range from interleukins to recombinant antibodies. Molecular farming in plants has the potential to provide virtually unlimited quantities of recombinant proteins for use as diagnostic and therapeutic tools in health care and the life sciences. Plants produce a large amount of biomass and protein production can be increased using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can also produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the molecular farming of recombinant therapeutics, including vaccines, diagnostics, such as recombinant antibodies, plasma proteins, cytokines and growth factors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
In both plant and mammalian Gram-negative pathogenic bacteria, type III secretion systems (TTSSs) play a crucial role in interactions with the host. All these systems share conserved proteins (called Hrc in plant pathogens), but each bacterium also produces a variable number of additional type III proteins either unique or with counterparts only in a limited number of related systems. In order to investigate the role of the different proteins encoded by the hrp gene cluster of the phytopathogenic bacterium Ralstonia solanacearum, non-polar mutants in all hrp genes (except for hrcQ) were analysed for their interactions with plants, their ability to secrete the PopA protein and their production of the Hrp pilus. In addition to Hrc proteins and the HrpY major component of the Hrp pilus, four additional Hrp proteins are indispensable for type III secretion and for interactions with plants. We also provide evidence that hrpV and hrpX mutants can still target the HrpY pilin outside the bacterial cell but are impaired in the production of Hrp pili, indicating that HrpV and HrpX proteins are involved in the assembly of this appendage.  相似文献   

17.
The need for recombinant pharmaceutical proteins has urged scientists all over the world to search for better protein expression systems which have higher capabilities and flexibilities. Although a number of protein expression systems are now available, no system is ideal and different systems lack specific properties. Here, microalga Haematococcus is discussed as a new protein expression system which merits cheap growth medium, fast growth rate, ease of manipulation and scale-up, ease of transformation, potential of exploiting in bioreactors and ability to exert post-translational modifications to the proteins. This green single-cell plant has favorable biological and biotechnological features for production of remarkable yields of recombinant proteins with high functionality. In this review article, we highlight the favorable biotechnological characteristics of Haematococcus for lowering costs and facilitating scale-up of recombinant protein production along with its superior biological features for genetic engineering.  相似文献   

18.
Plants are becoming commercially acceptable for recombinant protein production for human therapeutics, vaccine antigens, industrial enzymes, and nutraceuticals. Recently, significant advances in expression, protein glycosylation, and gene-to-product development time have been achieved. Safety and regulatory concerns for open-field production systems have also been addressed by using contained systems to grow transgenic plants. However, using contained systems eliminates several advantages of open-field production, such as inexpensive upstream production and scale-up costs. Upstream technological achievements have not been matched by downstream processing advancements. In the past 10 years, the most research progress was achieved in the areas of extraction and pretreatment. Extraction conditions have been optimized for numerous proteins on a case-by-case basis leading to the development of platform-dependent approaches. Pretreatment advances were made after realizing that plant extracts and homogenates have unique compositions that require distinct conditioning prior to purification. However, scientists have relied on purification methods developed for other protein production hosts with modest investments in developing novel plant purification tools. Recently, non-chromatographic purification methods, such as aqueous two-phase partitioning and membrane filtration, have been evaluated as low-cost purification alternatives to packed-bed adsorption. This paper reviews seed, leafy, and bioreactor-based platforms, highlights strategies for the primary recovery and purification of recombinant proteins, and compares process economics between systems. Lastly, the future direction and research needs for developing economically competitive recombinant proteins with commercial potential are discussed.  相似文献   

19.
20.
Vegetable protein synthesis systems for industry, medicine, and research are becoming increasingly popular. The technology of protein production in plants has certain advantages, compared with the expression systems of bacteria and yeast. The rich variety of promoters, regulatory elements, affinity tags, and fusion partners that are used in molecular biology and plant biotechnology can create hybrid genetic constructs adapted to the solution of various tasks associated with protein synthesis and purification. New methods of modification of plant systems are being developed for the synthesis of functionally active human proteins whose structure is close to the natural analogues. This review shows current approaches to increase the yield of the target protein, facilitating the procedures of its isolation and purification and preventing degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号