首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen YH  Kuo ML  Cheng PJ  Hsaio HS  Lee PT  Lin SJ 《Cytokine》2012,58(1):40-46
Interleukin (IL)-15 and IL-21, both belonging to common γ-chain-signaling cytokine family, have an important role to maintain homeostatic proliferation of CD8(+) T cells. CD28, an essential co-stimulatory molecule on T cells, may be a marker of replicative senescence. We investigated the effect of IL-15 and IL-21, alone or in combination, on activation, apoptosis, cytokine production and cytotoxic function of magnetic bead purified umbilical cord blood (UCB) and adult peripheral blood (APB) CD8(+) T cells with regards to their CD28 expression. We established that (1) IL-15-induced CD8(+) T cell proliferation was associated with a preferential expansion of CD28(-) population in UCB, which could be partially counteracted by IL-21; (2) UCB CD8(+) T cells were more readily responsive to IL-15 compared to their adult counterparts in terms of CD69 expression, with the majority of CD69-bearing CD8(+) T cells were CD28(-); (3) IL-21 further promoted interferon-gamma, but not tumor necrosis factor-alpha production from IL-15 treated CD8(+) T cells; (4) IL-21 also synergized with IL-15 to enhance perforin and granzyme B expression of CD8(+) T cells, especially in APB CD8(+)CD28(-) subsets; (5) IL-21 resulted in CD8(+) T cells apoptosis both in APB and UCB cells, mainly in CD8(+)CD28(-) subsets. Taken together, we demonstrate differential IL-15/IL-21 response in UCB CD8(+) T cells with regards to CD28 expression. Our results suggest that combining IL-21 and IL-15 immunotherapy may be better than IL-15 alone to ameliorate graft-versus-host disease while preserving antitumor effect in the post-UCB transplantation period.  相似文献   

2.
Two prototypic types of virus-specific CD8(+) T cells can be found in latently infected individuals: CD45R0(+)CD27(+)CCR7(-) effector-memory, and CD45RA(+)CD27(-)CCR7(-) effector-type cells. It has recently been implied that CD45RA(+)CD27(-)CCR7(-) T cells are terminally differentiated effector cells and as such have lost all proliferative capacity. We show in this study, however, that stimulation of CMV-specific CD45RA(+)CD27(-)CCR7(-) T cells with their cognate peptide in concert with either CD4(+) help or IL-2, IL-15, or IL-21 in fact induces massive clonal expansion. Concurrently, these stimulated effector T cells change cell surface phenotype from CD45RA to CD45R0 and regain CCR7, while effector functions are maintained. Our data imply that CD45RA(+)CD27(-)CCR7(-) effector-type T cells contribute to immunity not only by direct execution of effector functions, but also by yielding progeny in situations of viral reinfection or reactivation.  相似文献   

3.
The inducible costimulatory (ICOS) molecule is expressed by activated T cells and has homology to CD28 and CD152. ICOS binds B7h, a molecule expressed by APC with homology to CD80 and CD86. To investigate regulation of ICOS expression and its role in Th responses we developed anti-mouse ICOS mAbs and ICOS-Ig fusion protein. Little ICOS is expressed by freshly isolated mouse T cells, but ICOS is rapidly up-regulated on most CD4(+) and CD8(+) T cells following stimulation of the TCR. Strikingly, ICOS up-regulation is significantly reduced in the absence of CD80 and CD86 and can be restored by CD28 stimulation, suggesting that CD28-CD80/CD86 interactions may optimize ICOS expression. Interestingly, TCR-transgenic T cells differentiated into Th2 expressed significantly more ICOS than cells differentiated into Th1. We used two methods to investigate the role of ICOS in activation of CD4(+) T cells. First, CD4(+) cells were stimulated with beads coated with anti-CD3 and either B7h-Ig fusion protein or control Ig fusion protein. ICOS stimulation enhanced proliferation of CD4(+) cells and production of IFN-gamma, IL-4, and IL-10, but not IL-2. Second, TCR-transgenic CD4(+) T cells were stimulated with peptide and APC in the presence of ICOS-Ig or control Ig. When the ICOS:B7h interaction was blocked by ICOS-Ig, CD4(+) T cells produced more IFN-gamma and less IL-4 and IL-10 than CD4(+) cells differentiated with control Ig. These results demonstrate that ICOS stimulation is important in T cell activation and that ICOS may have a particularly important role in development of Th2 cells.  相似文献   

4.
Many mechanisms involving TNF-alpha, Th1 responses, and Th17 responses are implicated in chronic inflammatory autoimmune disease. Recently, the clinical impact of anti-TNF therapy on disease progression has resulted in re-evaluation of the central role of this cytokine and engendered novel concept of TNF-dependent immunity. However, the overall relationship of TNF-alpha to pathogenesis is unclear. Here, we demonstrate a TNF-dependent differentiation pathway of dendritic cells (DC) evoking Th1 and Th17 responses. CD14(+) monocytes cultured in the presence of TNF-alpha and GM-CSF converted to CD14(+) CD1a(low) adherent cells with little capacity to stimulate T cells. On stimulation by LPS, however, they produced high levels of TNF-alpha, matrix metalloproteinase (MMP)-9, and IL-23 and differentiated either into mature DC or activated macrophages (M phi). The mature DC (CD83(+) CD70(+) HLA-DR (high) CD14(low)) expressed high levels of mRNA for IL-6, IL-15, and IL-23, induced naive CD4 T cells to produce IFN-gamma and TNF-alpha, and stimulated resting CD4 T cells to secret IL-17. Intriguingly, TNF-alpha added to the monocyte culture medium determined the magnitude of LPS-induced maturation and the functions of the derived DC. In contrast, the M phi (CD14(high)CD70(+)CD83(-)HLA-DR(-)) produced large amounts of MMP-9 and TNF-alpha without exogenous TNF stimulation. These results suggest that the TNF priming of monocytes controls Th1 and Th17 responses induced by mature DC, but not inflammation induced by activated M phi. Therefore, additional stimulation of monocytes with TNF-alpha may facilitate TNF-dependent adaptive immunity together with GM-CSF-stimulated M phi-mediated innate immunity.  相似文献   

5.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

6.
7.
Abnormal T cell responses to commensal bacteria are involved in the pathogenesis of inflammatory bowel disease. MyD88 is an essential signal transducer for TLRs in response to the microflora. We hypothesized that TLR signaling via MyD88 was important for effector T cell responses in the intestine. TLR expression on murine T cells was examined by flow cytometry. CD4(+)CD45Rb(high) T cells and/or CD4(+)CD45Rb(low)CD25(+) regulatory T cells were isolated and adoptively transferred to RAG1(-/-) mice. Colitis was assessed by changes in body weight and histology score. Cytokine production was assessed by ELISA. In vitro proliferation of T cells was assessed by [(3)H]thymidine assay. In vivo proliferation of T cells was assessed by BrdU and CFSE labeling. CD4(+)CD45Rb(high) T cells expressed TLR2, TLR4, TLR9, and TLR3, and TLR ligands could act as costimulatory molecules. MyD88(-/-) CD4(+) T cells showed decreased proliferation compared with WT CD4(+) T cells both in vivo and in vitro. CD4(+)CD45Rb(high) T cells from MyD88(-/-) mice did not induce wasting disease when transferred into RAG1(-/-) recipients. Lamina propria CD4(+) T cell expression of IL-2 and IL-17 and colonic expression of IL-6 and IL-23 were significantly lower in mice receiving MyD88(-/-) cells than mice receiving WT cells. In vitro, MyD88(-/-) T cells were blunted in their ability to secrete IL-17 but not IFN-gamma. Absence of MyD88 in CD4(+)CD45Rb(high) cells results in defective T cell function, especially Th17 differentiation. These results suggest a role for TLR signaling by T cells in the development of inflammatory bowel disease.  相似文献   

8.
Although the adaptive immune system has a remarkable ability to mount rapid recall responses to previously encountered pathogens, the cellular and molecular signals necessary for memory CD8(+) T cell reactivation are poorly defined. IL-15 plays a critical role in memory CD8(+) T cell survival; however, whether IL-15 is also involved in memory CD8(+) T cell reactivation is presently unclear. Using artificial Ag-presenting surfaces prepared on cell-sized microspheres, we specifically addressed the role of IL-15 transpresentation on mouse CD8(+) T cell activation in the complete absence of additional stimulatory signals. In this study we demonstrate that transpresented IL-15 is significantly more effective than soluble IL-15 in augmenting anti-CD3epsilon-induced proliferation and effector molecule expression by CD8(+) T cells. Importantly, IL-15 transpresentation and TCR ligation by anti-CD3epsilon or peptide MHC complexes exhibited synergism in stimulating CD8(+) T cell responses. In agreement with previous studies, we found that transpresented IL-15 preferentially stimulated memory phenotype CD8(+) T cells; however, in pursuing this further, we found that central memory (T(CM)) and effector memory (T(EM)) CD8(+) T cells responded differentially to transpresented IL-15. T(CM) CD8(+) T cells undergo Ag-independent proliferation in response to transpresented IL-15 alone, whereas T(EM) CD8(+) T cells are relatively unresponsive to transpresented IL-15. Furthermore, upon Ag-specific stimulation, T(CM) CD8(+) T cell responses are enhanced by IL-15 transpresentation, whereas T(EM) CD8(+) T cell responses are only slightly affected, both in vitro and in vivo. Thus, our findings distinguish the role of IL-15 transpresentation in the stimulation of distinct memory CD8(+) T cell subsets, and they also have implications for ex vivo reactivation and expansion of Ag-experienced CD8(+) T cells for immunotherapeutic approaches.  相似文献   

9.
Nielsen N  Ødum N  Ursø B  Lanier LL  Spee P 《PloS one》2012,7(2):e31959
In mouse models of chronic inflammatory diseases, Natural Killer (NK) cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically distinguished as CD16(+)CD56(dim) and CD16(dim/-)CD56(bright). An expansion in the CD56(bright) NK cell subset has been associated with clinical responses to therapy in various autoimmune diseases, suggesting an immunoregulatory role for this subset in vivo. Here we compared the regulation of activated human CD4(+) T cells by CD56(dim) and CD56(bright) autologous NK cells in vitro. Both subsets efficiently killed activated, but not resting, CD4(+) T cells. The activating receptor NKG2D, as well as the integrin LFA-1 and the TRAIL pathway, played important roles in this process. Degranulation by NK cells towards activated CD4(+) T cells was enhanced by IL-2, IL-15, IL-12+IL-18 and IFN-α. Interestingly, IL-7 and IL-21 stimulated degranulation by CD56(bright) NK cells but not by CD56(dim) NK cells. NK cell killing of activated CD4(+) T cells was suppressed by HLA-E on CD4(+) T cells, as blocking the interaction between HLA-E and the inhibitory CD94/NKG2A NK cell receptor enhanced NK cell degranulation. This study provides new insight into CD56(dim) and CD56(bright) NK cell-mediated elimination of activated autologous CD4(+) T cells, which potentially may provide an opportunity for therapeutic treatment of chronic inflammation.  相似文献   

10.
After TCR cross-linking, naive CD4(+)CD45RA(+) T cells switch to the expression of the CD45RO isoform and acquire effector functions. In this study we have shown that cAMP-elevating agents added to anti-CD3- and anti-CD28-stimulated cultures of T lymphocytes prevent acquisition of the CD45RO(+) phenotype and lead to the generation of a new subpopulation of primed CD4(+)CD45RA(+) effector cells (cAMP-primed CD45RA). These cells displayed a low apoptotic index, as the presence of dibutyryl cAMP (dbcAMP)-rescued cells from CD3/CD28 induced apoptosis. Inhibition of CD45 splicing by dbcAMP was not reverted by addition of exogenous IL-2. cAMP-primed CD45RA cells had a phenotype characteristic of memory/effector T lymphocytes, as they showed an up-regulated expression of CD2, CD44, and CD11a molecules, while the levels of CD62L Ag were down-regulated. These cells also expressed the activation markers CD30, CD71, and HLA class II Ags at an even higher level than CD3/CD28-stimulated cells in the absence of dbcAMP. In agreement with this finding, cAMP-primed CD45RA cells were very efficient in triggering allogenic responses in a MLR. In addition, cAMP-primed CD45RA cells produce considerable amounts of the Th2 cytokines, IL-4, IL-10, and IL-13, whereas the production of IFN-gamma and TNF-alpha was nearly undetectable. The elevated production of IL-13 by neonatal and adult cAMP-primed CD45RA cells was specially noticeable. The cAMP-dependent inhibition of CD45 splicing was not caused by the production of immunosuppressor cytokines. These results suggest that within the pool of CD4(+)CD45RA(+) cells there is a subpopulation of effector lymphocytes generated by activation in the presence of cAMP-elevating agents.  相似文献   

11.
Autoreactive CD4(+) T cells play a major role in the pathogenesis of autoimmune diabetes in nonobese diabetic (NOD) mice. We recently showed that the non-MHC genetic background controlled enhanced entry into the IFN-gamma pathway by NOD vs B6.G7 T cells. In this study, we demonstrate that increased IFN-gamma, decreased IL-4, and decreased IL-10 production in NOD T cells is CD4 T cell intrinsic. NOD CD4(+) T cells purified and stimulated with anti-CD3/anti-CD28 Abs generated greater IFN-gamma, less IL-4, and less IL-10 than B6.G7 CD4(+) T cells. The same results were obtained in purified NOD.H2(b) vs B6 CD4(+) T cells, demonstrating that the non-MHC NOD genetic background controlled the cytokine phenotype. Moreover, the increased IFN-gamma:IL-4 cytokine ratio was independent of the genetic background of APCs, since NOD CD4(+) T cells generated increased IFN-gamma and decreased IL-4 compared with B6.G7 CD4(+) T cells, regardless of whether they were stimulated with NOD or B6.G7 APCs. Cell cycle analysis showed that the cytokine differences were not due to cycle/proliferative differences between NOD and B6.G7, since stimulated CD4(+) T cells from both strains showed quantitatively identical entry into subsequent cell divisions (shown by CFSE staining), although NOD cells showed greater numbers of IFN-gamma-positive cells with each subsequent cell division. Moreover, 7-aminoactinomycin D and 5-bromo-2'-deoxyuridine analysis showed indistinguishable entry into G(0)/G(1), S, and G(2)/M phases of the cell cycle for both NOD and B6.G7 CD4(+) cells, with both strains generating IFN-gamma predominantly in the S phase. Therefore, the NOD cytokine effector phenotype is CD4(+) T cell intrinsic, genetically controlled, and independent of cell cycle machinery.  相似文献   

12.
Differentiation of CD8(+) T cells at the tumor site toward effector and memory stages may represent a key step for the efficacy of antitumor response developing naturally or induced through immunotherapy. To address this issue, CD8(+) T lymphocytes from tumor-invaded (n = 142) and tumor-free (n = 42) lymph nodes removed from the same nodal basin of melanoma patients were analyzed for the expression of CCR7, CD45RA, perforin, and granzyme B. By hierarchical cluster analysis, CD8(+) T cells from all tumor-free lymph nodes and from 56% of the tumor-invaded lymph node samples fell in the same cluster, characterized mainly by CCR7(+) CD45RA(+/-) cytotoxic factor(-) cells. The remaining three clusters contained only samples from tumor-invaded lymph nodes and showed a progressive shift of the CD8(+) T cell population toward CCR7(-) CD45RA(-/+) perforin(+) granzyme B(+) differentiation stages. Distinct CD8(+) T cell maturation stages, as defined by CCR7 vs CD45RA and by functional assays, were identified even in melanoma- or viral Ag-specific T cells from invaded lymph nodes by HLA tetramer analysis. Culture for 7 days of CCR7(+) perforin(-) CD8(+) T cells from tumor-invaded lymph nodes with IL-2 or IL-15, but not IL-7, promoted, mainly in CCR7(+)CD45RA(-) cells, proliferation coupled to differentiation to the CCR7(-) perforin(+) stage and acquisition of melanoma Ag-specific effector functions. Taken together, these results indicate that CD8(+) T cells differentiated toward CCR7(-) cytotoxic factor(+) stages are present in tumor-invaded, but not in tumor-free, lymph nodes of a relevant fraction of melanoma patients and suggest that cytokines such as IL-2 and IL-15 may be exploited to promote Ag-independent maturation of anti-tumor CD8(+) T cells.  相似文献   

13.
We previously reported that IL-7(-/-)RAG(-/-) mice receiving naive T cells failed to induce colitis. Such abrogation of colitis may be associated with not only incomplete T cell maintenance due to the lack of IL-7, but also with the induction of colitogenic CD4(+) T cell apoptosis at an early stage of colitis development. Moreover, NK cells may be associated with the suppression of pathogenic T cells in vivo, and they may induce apoptosis of CD4(+) T cells. To further investigate these roles of NK cells, RAG(-/-) and IL-7(-/-)RAG(-/-) mice that had received naive T cells were depleted of NK cells using anti-asialo GM1 and anti-NK1.1 Abs. NK cell depletion at an early stage, but not at a later stage during colitogenic effector memory T cell (T(EM)) development, resulted in exacerbated colitis in recipient mice even in the absence of IL-7. Increased CD44(+)CD62L(-) T(EM) and unique CD44(-)CD62L(-) T cell subsets were observed in the T cell-reconstituted RAG(-/-) recipients when NK cells were depleted, although Fas, DR5, and IL-7R expressions in this subset differed from those in the CD44(+)CD62L(-) T(EM) subset. NK cell characteristics were the same in the presence or absence of IL-7 in vitro and in vivo. These results suggest that NK cells suppress colitis severity in T cell-reconstituted RAG(-/-) and IL-7(-/-)RAG(-/-) recipient mice through targeting of colitogenic CD4(+)CD44(+)CD62L(-) T(EM) and, possibly, of the newly observed CD4(+)CD44(-)CD62L(-) subset present at the early stage of T cell development.  相似文献   

14.
Human memory CD8(+) T cell subsets, termed central memory and effector memory T cells, can be identified by expression of CD45RA, CD62 ligand (CD62L), and CCR7. Accordingly, functional differences have been described for each subset, reflecting unique roles in immunological memory. The common gamma-chain cytokines IL-15 and IL-7 have been shown to induce proliferation and differentiation of human CD8(+) T cell subsets, as well as increased effector functions (i.e., cytokines, cytotoxicity). In this study, we observed that addition of IL-15 or IL-7 to cultures of human CD8(+) T cells profoundly enhanced the IL-12-IL-18 pathway of IFN-gamma production. Importantly, IL-15 and IL-7 lowered the threshold concentrations of IL-12 and IL-18 required for induction of IFN-gamma by 100-fold. Comparison of IL-15 and IL-7 demonstrated that IL-15 was superior in its ability to enhance IL-12-IL-18-induced IFN-gamma, without evidence of a synergistic effect between IL-15 and IL-7. We also observed that IL-15- and IL-7-mediated enhancement of IL-12-IL-18-induced IFN-gamma production was a functional property of effector memory CD8(+) T cells. Despite a lack of association between cell division and acquisition of IL-12-IL-18-induced IFN-gamma, down-regulation of CD62L expression correlated well with increased IL-12-IL-18-induced IFN-gamma. Purified central memory T cells stimulated with IL-15 and IL-7 down-regulated CD62L and acquired potent IL-12-IL-18-induced IFN-gamma similar to effector memory T cells. Thus, in addition to its known role in development of T cell memory, IL-15 may amplify memory CD8(+) T cell effector functions by increasing sensitivity to proinflammatory cytokine stimulation.  相似文献   

15.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

16.
Li L  Qiao D  Fu X  Lao S  Zhang X  Wu C 《PloS one》2011,6(5):e20165
Important advances have been made in the immunodiagnosis of tuberculosis (TB) based on the detection of Mycobacterium tuberculosis (MTB)-specific T cells. However, the sensitivity and specificity of the immunological approach are relatively low because there are no specific markers for antigen-specific Th cells, and some of the Th cells that do not produce cytokines can be overlooked using this approach. In this study, we found that MTB-specific peptides of ESAT-6/CFP-10 can stimulate the expression of CD40L specifically in CD4(+) T cells but not other cells from pleural fluid cells (PFCs) in patients with tuberculous pleurisy (TBP). CD4(+)CD40L(+) but not CD4(+)CD40L(-) T cells express IFN-γ, IL-2, TNF-α, IL-17 or IL-22 after stimulation with MTB-specific peptides. In addition, CD4(+)CD40L(+) T cells were found to be mostly polyfunctional T cells that simultaneously produce IFN-γ, IL-2 and TNF-α and display an effector or effector memory phenotype (CD45RA(-)CD45RO(+)CCR7(-)CD62L(-)ICOS(-)). To determine the specificity of CD4(+)CD40L(+) T cells, we incubated PFCs with ESTA-6/CFP-10 peptides and sorted live CD4(+)CD40L(+) and CD4(+)CD40L(-) T cells by flow cytometry. We further demonstrated that sorted CD4(+)CD40L(+), but not CD4(+)CD40L(-) fractions, principally produced IFN-γ, IL-2, TNF-α, IL-17 and IL-22 following restimulation with ESTA-6/CFP-10 peptides. Taken together, our data indicate that the expression of CD40L on MTB-specific CD4(+) T cells could be a good marker for the evaluation and isolation of MTB-specific Th cells and might also be useful in the diagnosis of TB.  相似文献   

17.
We have previously demonstrated that mucosal CD4(+) T cells expressing high levels of IL-7 receptor (IL-7R(high)) are pathogenic cells responsible for chronic colitis. Here we investigate whether IL-7 is directly involved in the expansion of IL-7R(high) memory CD4(+) mucosal T cells and the exacerbation of colitis. We first showed that CD4(+) lamina propria lymphocytes (LPLs) from wild-type, T cell receptor-alpha-deficient (TCR-alpha(-/-)), and recombinase-activating gene (RAG)-2(-/-)-transferred mice with or without colitis showed phenotypes of memory cells, but only CD4(+) LPLs from colitic mice showed IL-7R(high). In vitro stimulation by IL-7, but not by IL-15 and thymic stromal lymphopoietin, enhanced significant proliferative responses and survival of colitic CD4(+), but not normal CD4(+) LPLs. Importantly, in vivo administration of IL-7 mice accelerated the expansion of IL-7R(high) memory CD4(+) LPLs and thereby exacerbated chronic colitis in RAG-2(-/-) mice transferred with CD4(+) LPLs from colitic TCR-alpha(-/-) mice. Conversely, the administration of anti-IL-7R monoclonal antibody significantly inhibited the development of TCR-alpha(-/-) colitis with decreased expansion of CD4(+) LPLs. Collectively, the present data indicate that IL-7 is essential for the expansion of pathogenic memory CD4(+) T cells under pathological conditions. Therefore, therapeutic approaches targeting the IL-7R pathway may be feasible in the treatment of human inflammatory bowel disease.  相似文献   

18.
Regulatory CD4(+)CD25(+) T cells (Tregs) are defective numerically and functionally in autoimmune hepatitis (AIH). We have investigated and compared the mechanism of action of Tregs in healthy subjects and in AIH patients using Transwell experiments, where Tregs are cultured either in direct contact with or separated from their targets by a semipermeable membrane. We also studied Treg FOXP3 expression and effect on apoptosis. Direct contact is necessary for Tregs to suppress proliferation and IFN-gamma production by CD4(+)CD25(-) and CD8(+) T cells in patients and controls. Moreover, in both, direct contact of Tregs with their targets leads to increased secretion of regulatory cytokines IL-4, IL-10, and TGF-beta, suggesting a mechanism of linked immunosuppression. Tregs/CD4(+)CD25(-) T cell cocultures lead to similar changes in IFN-gamma and IL-10 secretion in patients and controls, whereas increased TGF-beta secretion is significantly lower in patients. In contrast, in patients, Tregs/CD8(+) T cell cocultures lead to a higher increase of IL-4 secretion. In AIH, Treg FOXP3 expression is lower than in normal subjects. Both in patients and controls, FOXP3 expression is present also in CD4(+)CD25(-) T cells, although at a low level and not associated to suppressive function. Both in patients and controls, addition of Tregs does not influence target cell apoptosis, but in AIH, spontaneous apoptosis of CD4(+)CD25(-) T cells is reduced. In conclusion, Tregs act through a direct contact with their targets by modifying the cytokine profile and not inducing apoptosis. Deficient CD4(+)CD25(-) T cell spontaneous apoptosis may contribute to the development of autoimmunity.  相似文献   

19.
CD4+CD25high regulatory cells in human peripheral blood   总被引:90,自引:0,他引:90  
Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.  相似文献   

20.
CD8 T cells stimulated with a suboptimal dose of anti-CD3 Abs (100 pg/ml) in the presence of IL-15 retain a naive phenotype with expression of CD45RA, CD28, CD27, and CCR7 but acquire new functions and differentiate into immunosuppressive T cells. CD8(+)CCR7(+) regulatory T cells (Tregs) express FOXP3 and prevent CD4 T cells from responding to TCR stimulation and entering the cell cycle. Naive CD4 T cells are more susceptible to inhibition than memory cells. The suppressive activity of CD8(+)CCR7(+) Tregs is not mediated by IL-10, TGF-β, CTLA-4, CCL4, or adenosine and relies on interference with very early steps of the TCR signaling cascade. Specifically, CD8(+)CCR7(+) Tregs prevent TCR-induced phosphorylation of ZAP70 and dampen the rise of intracellular calcium in CD4 T cells. The inducibility of CD8(+)CCR7(+) Tregs is correlated with the age of the individual with PBLs of donors older than 60 y yielding low numbers of FOXP3(low) CD8 Tregs. Loss of CD8(+)CCR7(+) Tregs in the elderly host may be of relevance in the aging immune system as immunosenescence is associated with a state of chronic smoldering inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号