首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial patterns of spread of lettuce big‐vein disease (LBVD) and Lettuce necrotic yellows virus (LNYV) were examined in two plantings each consisting of two blocks of lettuce. LBVD came from planting land infested with viruliferous Olpidium brassicae resting spores, while LNYV was introduced by aphid vectors from external sources consisting of LNYV‐infected sowthistle (Sonchus oleraceus) weeds. Clustering of LBVD was obvious in an area where the soil was heavily infested with only sporadic occurrence elsewhere. There was a steep decline in LNYV incidence over distance from a concentrated external weed source, with clustering of LNYV‐infected plants at the crop edge closest to it. There was no evidence of secondary spread with LBVD or LNYV.  相似文献   

2.
小麦丛矮病毒(WRSV)的近全长cDNA基因文库的构建   总被引:2,自引:0,他引:2  
用大肠杆菌Poly(A)聚合酶,在纯化的小麦丛矮病毒的单链基因组RNA3'末端加多聚腺苷酸,以此RNA作模板,12-18寡聚脱氧胸核着酸作引物,合成cNDA后,分别用限制性内切酶PstI和EcoRI对该cDNA酶切,同时再分别用PstI单酶和SmaI与EcoRI双酶对pUC载体酶切,经连接、转化感受态细胞、筛选和酶切鉴定后,共得到10种不同大小的非定向克隆,其大小之和约14kb,同时还得到定向克隆47个。已知N蛋白基因3'端含有SacI酶切位点,故在用限制性内切酶SacI对10种插入片段进行分析后发现,仅有约6kb的插入片段含有SacI位点,再用合成的与WRSVNN蛋白mRNA3'端顺序相同的引物对该克隆进行顺序分析证明,它含有WRSVN蛋白、G蛋白、M蛋白和部分L蛋白基因。对47个定向克隆进行顺序测定后,用DNA顺序分析软件将它与其它几种弹状病毒基因组的3'前导(leader)和5'拖尾(trailer)RNA进行比较后发现,有两个定向克隆分别含有它们的3'前导或5'拖尾的高保守区顺序,构建了一个近全长的小麦丛矮病毒(WRSV)cDNA文库。  相似文献   

3.
4.
The experimental study was conducted during the period of 2008-2010 at the experimental field of the Institute of Forage Crops in Pleven. The hybridization scheme included direct and back crosses covering four varieties of forage pea (Pisum sativum L.), namely two spring ones, Usatii 90 and Kamerton from Ukraine, and a winter one from Bulgaria, Pleven 10. There was analyzed the inheritance of quantitative traits such as plant height, height to first pod, pod number per plant, seed number per plant, seed number per pod, seed weight per plant and number of fertile nodes per plant of parental components (P1 and P2) and both first (F1) and second (F2) hybrid generations. The cross Usatii 90 x Pleven 10 showed the highest real heterosis effect for plant height (8.26%), pods per plant (158.79%), seeds per plant (272.16%), seeds per pod (42.09%), seed weight per plant (432.43%) and number of fertile nodes per plant (117.14%). The cross Pleven 10 x Usatii 90 had the highest real heterosis effect height to first pod (11.06%). In F2 plants, the strongest depression for plant height (5.88%), seeds per plant (57.88%), seeds per pod (55.93%) and seed weight per plant (55.99%) was in the cross Usatii 90 x Pleven 10, for height to first pod (1.47%) in the cross Kamerton x Pleven 10 and for number of fertile nodes per plant (15.91%) in the cross Pleven 10 x Usatii 90. The highest positive degree of transgression for number of fertile nodes per plant (165.64%) and seed weight per plant (162.10%) was in the cross Pleven 10 x Kamerton and for pod number per plant (102.54%) and seeds per plant (99.13%) in Kamerton x Pleven 10. The stability of the characters was determined. Low variability in F1 and F2 was found in plant height (3.97-6.85%). Variability of number seeds per plant in F1 was highest (11.86-33.23%). For all other traits, the variability varied from average to high. A lower narrow-sense heritability coefficient was observed for plant height, height to first pod, pods per plant, seeds per plant and seed weight per plant (from 0.001 to 0.230). In few cases, such as in fertile nodes per plant (0.39 and 0.81) and seeds per pod (0.44), the coefficients ofbroad-sense heritability were higher.  相似文献   

5.
The experimental study was conducted during the period of 2008–2010 at the experimental field of the Institute of Forage Crops in Pleven. The hybridization scheme included direct and back crosses covering four varieties of forage pea (Pisum sativum L.), namely two spring ones, Usatii 90 and Kamerton from Ukraine, and a winter one from Bulgaria, Pleven 10. There was analyzed the inheritance of quantitative traits such as plant height, height to first pod, pod number per plant, seed number per plant, seed number per pod, seed weight per plant and number of fertile nodes per plant of parental components (P1 and P2) and both first (F1) and second (F2) hybrid generations. The cross Usatii 90 × Pleven 10 showed the highest real heterosis effect for plant height (8.26%), pods per plant (158.79%), seeds per plant (272.16%), seeds per pod (42.09%), seed weight per plant (432.43%) and number of fertile nodes per plant (117.14%). The cross Pleven 10 × Usatii 90 had the highest real heterosis effect height to first pod (11.06%). In F2 plants, the strongest depression for plant height (5.88%), seeds per plant (57.88%), seeds per pod (55.93%) and seed weight per plant (55.99%) was in the cross Usatii 90 × Pleven 10, for height to first pod (1.47%) in the cross Kamerton × Pleven 10 and for number of fertile nodes per plant (15.91%) in the cross Pleven 10 × Usatii 90. The highest positive degree of transgression for number of fertile nodes per plant (165.64%) and seed weight per plant (162.10%) was in the cross Pleven 10 × Kamerton and for pod number per plant (102.54%) and seeds per plant (99.13%) in Kamerton × Pleven 10. The stability of the characters was determined. Low variability in F1 and F2 was found in plant height (3.97–6.85%). Variability of number seeds per plant in F1 was highest (11.86–33.23%). For all other traits, the variability varied from average to high. A lower narrow-sense heritability coefficient was observed for plant height, height to first pod, pods per plant, seeds per plant and seed weight per plant (from 0.001 to 0.230). In few cases, such as in fertile nodes per plant (0.39 and 0.81) and seeds per pod (0.44), the coefficients of broad-sense heritability were higher.  相似文献   

6.
Plant–plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant–plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of – and interrelationships among – these factors as drivers of plant–plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modelling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant–plant co-occurrence levels measured. Functional traits, specifically facilitated plants’ height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant–plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant–plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant–plant interactions at broader spatial scales. In our global-scale study on drylands, plant–plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: (1) positive plant–plant interactions are more likely to occur for taller facilitated species in drylands, and (2) plant–plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants.  相似文献   

7.
丛枝菌根(AM)生物技术在现代农业体系中的生态意义   总被引:19,自引:5,他引:14  
菌根是植物根系与特定的土壤真菌形成的共生体,有利于生态系统中养分循环,协助植物抵御不良环境胁迫.自然条件下,大多数植物表现一定的菌根依赖性,在植株根系发育过程中如能与适宜的菌根真菌形成良好的菌根结构,可提高产量,改善品质,其中丛枝菌根是最普遍的类型.丛枝菌根帮助植物抵御不良环境胁迫及病虫害,促进植物健康生长,可减少化学肥料、杀虫剂施用量,以减少对环境、生态不利的化学物质施用量.丛枝菌根共生体可加速根系生长,提高对移动性低的无机离子吸收,加速养分循环利用,增强植物对不良胁迫(生物与非生物)因素的耐受力,形成良好的土壤结构,提高植物群体的多样性.文章综述了丛枝菌根真菌生态特征,丛枝菌根对寄主植物的影响,丛枝菌根生物技术应用于农业体系的生态意义及其应用潜力.  相似文献   

8.
Experiments were conducted to test the hypothesis that plant learning by a relative plant-specialist parasitoid wasp should influence the probability of orienting to plant odors (plant finding) and the duration of searching on a plant after landing (plant examining). The insect tested was Diaeretiella rapaeM'Intosh (Hymenoptera: Aphidiidae), a parasitoid wasp that usually attacks aphids on cruciferous plants, but occasionally on other plants. Laboratory experiments using collard as the cruciferous plant and potato as the novel plant demonstrated that postemergence (adult) plant experience affected plant examining only on the less preferred plant, potato, and was reversible and relatively long-term (that is, lasted >2 days). Postemergence experience with potato did not increase orientation to potato odor in a wind tunnel, but postemergence experience with collard resulted in a trend of increased likelihood of flying to collard odor. Preemergence treatments affected plant finding but not plant examining.  相似文献   

9.
Dietary plant sterols accumulate in the brain   总被引:1,自引:0,他引:1  
Dietary plant sterols and cholesterol have a comparable chemical structure. It is generally assumed that cholesterol and plant sterols do not cross the blood-brain barrier, but quantitative data are lacking. Here, we report that mice deficient for ATP-binding cassette transporter G5 (Abcg5) or Abcg8, with strongly elevated serum plant sterol levels, display dramatically increased (7- to 16-fold) plant sterol levels in the brain. Apolipoprotein E (ApoE)-deficient mice also displayed elevated serum plant sterol levels, which was however not associated with significant changes in brain plant sterol levels. Abcg5- and Abcg8-deficient mice were found to carry circulating plant sterols predominantly in high-density lipoprotein (HDL)-particles, whereas ApoE-deficient mice accommodated most of their serum plant sterols in very low-density lipoprotein (VLDL)-particles. This suggests an important role for HDL and/or ApoE in the transfer of plant sterols into the brain. Moreover, sitosterol upregulated apoE mRNA and protein levels in astrocytoma, but not in neuroblastoma cells, to a higher extend than cholesterol. In conclusion, dietary plant sterols pass the blood-brain barrier and accumulate in the brain, where they may exert brain cell type-specific effects.  相似文献   

10.
Plant growth-promoting rhizobacteria are commonly found in the rhizosphere (adjacent to the root surface) and may promote plant growth via several diverse mechanisms, including the production or degradation of the major groups of plant hormones that regulate plant growth and development. Although rhizobacterial production of plant hormones seems relatively widespread (as judged from physico-chemical measurements of hormones in bacterial culture media), evidence continues to accumulate, particularly from seedlings grown under gnotobiotic conditions, that rhizobacteria can modify plant hormone status. Since many rhizobacteria can impact on more than one hormone group, bacterial mutants in hormone production/degradation and plant mutants in hormone sensitivity have been useful to establish the importance of particular signalling pathways. Although plant roots exude many potential substrates for rhizobacterial growth, including plant hormones or their precursors, limited progress has been made in determining whether root hormone efflux can select for particular rhizobacterial traits. Rhizobacterial mediation of plant hormone status not only has local effects on root elongation and architecture, thus mediating water and nutrient capture, but can also affect plant root-to-shoot hormonal signalling that regulates leaf growth and gas exchange. Renewed emphasis on providing sufficient food for a growing world population, while minimising environmental impacts of agriculture because of overuse of fertilisers and irrigation water, will stimulate the commercialisation of rhizobacterial inoculants (including those that alter plant hormone status) to sustain crop growth and yield. Combining rhizobacterial traits (or species) that impact on plant hormone status thereby modifying root architecture (to capture existing soil resources) with traits that make additional resources available (e.g. nitrogen fixation, phosphate solubilisation) may enhance the sustainability of agriculture.  相似文献   

11.
Aims UV-B radiation is known to affect plant physiology and growth rate in ways that can influence community species composition and structure. Nevertheless, comparatively little is known about how UV-B radiation induced changes in the performance of individual species cascades to affect overall community properties. Because foliage leaves are primarily responsible for photosynthesis and carbon gain and are the major organ that senses and responds to UV-B radiation, we hypothesized that, under reduced UV-B radiation, species with larger leaf areas per plant would manifest higher growth rates and hence tend to improve their community status compared to species with smaller leaf areas per plant in herbaceous plant communities.Methods We tested this hypothesis by examining plant traits (leaf area per plant and plant height), plant growth rate (aboveground biomass per plant and plant biomass per area) and community status (species within-community relative biomass) for 19 common species in a two-year field experiment in an alpine meadow on Tibetan Plateau.Important findings Aboveground biomass per plant, as well as per area, progressively increased in a 39% reduced (relative to ambient) UV-B treatment during the experimental period. At the second year, 11 out of 19 species significantly or marginally significantly increased their plant height, leaf area per plant and aboveground biomass per plant. No species was negatively affected by reducing UV-B. As hypothesized, the increase in aboveground biomass per plant increased with increasing leaf area per plant, as indicated by cross-species regression analysis. Moreover, the change in species within-community status increased with increasing leaf area per plant. Our study demonstrates that UV-B radiation has differential effects on plant growth rate across species and hence significantly affects species composition and plant community structure. We suggest that UV-B radiation is an ecological factor structuring plant communities particularly in alpine and polar areas.  相似文献   

12.
Vegetation complexity is characterized by two major traits, i.e., plant chemical and plant structural complexity. Plant species diversity strongly determines these traits. Furthermore, plant structures affect microclimatic conditions, which in turn influence the emission and dispersion of plant volatiles (e.g., chemical complexity). Plant volatile chemical complexity may significantly affect orientation of herbivorous and carnivorous arthropods. Therefore, the way in which plant chemical and plant structural complexity act “in concert” may influence foraging and mating success of arthropods, and thus, finally, community composition. This review emphasizes an integrative view on the relationship between plant species diversity, plant structural complexity, plant volatiles (chemical complexity) and their effects on arthropods. Three new hypotheses are raised, which predict possible relations between plant volatile complexity and plant species diversity: (1) saturation-, (2) step-by-step, (3) incoherence-hypothesis. We conclude that arthropod orientation in natural environments is strongly determined by the relationship between plant volatile diversity and plant species diversity. Furthermore, we emphasize that structural complexity of the vegetation affects plant volatile diversity and thus, arthropod orientation.We review available information on how insects actually respond to complexity during olfactory and visual search and ask for both laboratory and field studies to further unravel the mechanisms of interactions between vegetation traits and their impact on arthropod orientation.  相似文献   

13.
Aims Riparian plant diversity is sensitive to changes in groundwater in arid regions. However, little is known about how plant diversity responds to changes in environment along riverside-desert gradients in riparian ecosystem. Our objectives were to (i) identify riparian plant diversity along riverside-desert gradients in Tarim desert riparian forests, (ii) analyze the impact of environment variables on plant diversity, (iii) determine the optimum groundwater depth for different plant life-forms.  相似文献   

14.
Abstract. Grasslands encompass a broad array of vegetation and climatic zones. We describe the first developments towards a rule-based functional model for predicting vegetation structure in Australian and New Zealand pastures and rangelands. The approach aims to predict the combined effects of climate and disturbance by humans and grazing livestock, and to provide a level of resolution needed for predicting changes in pastures and rangelands. We enlisted expert knowledge to develop: (1) a minimum set of critical traits; (2) rules relating site variables to favoured plant attributes; (3) rules relating attributes to plant functional traits, and (4) rules relating plant functional types to likely plant communities. We tested the resulting model by deriving some simple predictions of plant communities of some existing pasture and rangeland sites in Australia and New Zealand, with differing climatic and human disturbance inputs. The results indicate that this first model is able to predict plant communities with varying success rates, and with the best results in cases where there are extreme climates or high management inputs. Key sensitivities in the model where further research is required include: (1) the urgent need for more explicit understanding of the key plant functional attributes favoured by differing climates and disturbance regimes, (2) the functional relationships between these plant functional attributes and recognisable plant functional types in vegetation, and (3) the assembly rules for the coexistence of these different plant functional types in major plant communities. The same understanding is required for subsequent process-based modelling development.  相似文献   

15.
The dynamics of semi-arid plant communities are determined by the interplay between competition and facilitation among plants. The sign and strength of these biotic interactions depend on plant traits. However, the relationships between plant traits and biotic interactions, and the consequences for plant communities are still poorly understood. Our objective here was to investigate, with a modelling approach, the role of plant reproductive traits on biotic interactions, and the consequences for processes such as plant succession and invasion. The dynamics of two plant types were modelled with a spatially-explicit integrodifferential model: (1) a plant with seed dispersal (colonizer of bare soil) and (2) a plant with local vegetative propagation (local competitor). Both plant types were involved in facilitation due to a local positive feedback between vegetation biomass and soil water availability, which promoted establishment and growth. Plants in the system also competed for limited water. The efficiency in water acquisition (dependent on reproductive and growth plant traits) determined which plant type dominated the community at the steady state. Facilitative interactions between plant types also played an important role in the community dynamics, promoting establishment in the driest conditions and recovery from low biomass. Plants with vegetative propagation took advantage of the ability of seed dispersers to establish on bare soil from a low initial biomass. Seed dispersers were good invaders, maintained high biomass at intermediate and high rainfall and showed a high ability in taking profit from the positive feedback originated by plants with vegetative propagation under the driest conditions. However, seed dispersers lost competitiveness with an increasing investment in fecundity. All together, our results showed that reproductive plant traits can affect the balance between facilitative and competitive interactions. Understanding this effect of plant traits on biotic interactions provides insights in processes such as plant succession and shrub encroachment.  相似文献   

16.
Culture media and environmental factors may significantly influence the yield of haploid plants from anther cultures. Our objectives were to identify a combination of 2,4-dichlorophenoxyacetic acid (2,4-D) and indoleacetic acid (IAA) concentrations which produce the maximum number of haploid plants, and to evaluate the effects of duration in induction medium on calli induction, plant regeneration, and green plant production from anther cultures in spring wheat. Significant (P ≤ 0.01) plant growth regulator concentration effects (2,4-D and IAA) were observed on the number of calli, green plants and albino plants produced, and on direct plant regeneration. Addition of 2,4-D to the induction medium resulted in significantly (P ≤ 0.01) higher means for all anther culture components compared to IAA> While addition of 2,4-D significantly (P ≤ 0.01) reduced plant regeneration, it substantially increased green plant percentage at a 0.3-mg l−1 concentration of IAA. Use of response functions to estimate the maximum effective 2,4-D × IAA combination implied that higher 2,4-D levels in the induction medium should be investigated, and that the optimum hormone combination differs for plant regeneration and green plant percentage. Significant (P ≤ 0.01) effects of duration on callus induction medium were observed for plant regeneration and green plant percentage.  相似文献   

17.
不同株型芝麻种质湿害后产量性状研究及耐湿性评价   总被引:4,自引:0,他引:4  
于盛花期对66份种质进行湿害处理,结果表明:湿害对单秆型和分枝型种质的产量性状影响差异明显,对单秆型芝麻产量性状的影响(湿害指数值)大小依次为单株种子干重(69.18%)蒴果数(67.48%)有效果节数(49.10%)有效果轴长度(45.69%)株高(16.40%),对分枝性芝麻的影响依次为分枝有效果节数(65.96%)分枝蒴果数(64.73%)总蒴果数(52.01%)单株种子干重(49.92%)主茎蒴果数(41.66%)主茎有效果轴长度(37.57%)有效分枝数(34.21%)主茎有效果节数(20.12%)株高(15.43%);湿害对三蒴型芝麻的侧位蒴果影响较大,对单秆三蒴型芝麻的影响为侧位蒴果数(92.25%)中位蒴果数(50.25%),对分枝三蒴型芝麻的影响为分枝侧位蒴果数(92.86%)主茎侧位蒴果数(69.14%)分枝中位蒴果数(44.17%)主茎中位蒴果数(32.97%)。根据相对湿害产量可以将供试种质聚为耐湿与不耐湿二大类,不耐湿类型种质61份,占92.42%;耐湿类型种质5份,占7.58%,为竹山白芝麻、西平二郎花、阜南芝麻、嘉兴紧口黑和麻城黑芝麻,可作为耐湿种质加以利用。  相似文献   

18.
Several ascomycetous insect-pathogenic fungi, including species in the genera Beauveria and Metarhizium, are plant root symbionts/endophytes and are termed as endophytic insect-pathogenic fungi (EIPF). The endophytic capability and insect pathogenicity of Metarhizium are coupled to provide an active method of insect-derived nitrogen transfer to plant hosts via fungal mycelia. In exchange for the insect-derived nitrogen, the plant provides photosynthate to the fungus. This symbiotic interaction offers other benefits to the plant—EIPF can improve plant growth, they are antagonistic to plant pathogens and herbivores and can enhance the plant tolerance to abiotic stresses. The mechanisms and underlying biochemical and genetic features of insect pathogenesis are generally well-established. However, there is a paucity of information regarding the underlying mechanisms in this plant-symbiotic association. Here we review five aspects of EIPF interactions with host plant roots: (i) rhizosphere colonization, (ii) signalling factors from the plant and EIPF, (iii) modulation of plant defence responses, (iv) nutrient exchange and (v) tripartite interactions with insects and other micro-organisms. The elucidation of these interactions is fundamental to understanding this symbiotic association for effective application of EIPF in an agricultural setting.  相似文献   

19.
Pathological hormone imbalances   总被引:7,自引:0,他引:7  
Plant hormones play important roles in regulating developmental processes and signalling networks involved in plant responses to a wide range of biotic and abiotic stresses. Salicylic acid (SA), jasmonates (JA) and ethylene (ET) are well known to play crucial roles in plant disease and pest resistance. However, the roles of other hormones such as abscisic acid (ABA), auxin, gibberellin (GA), cytokinin (CK) and brassinosteroid (BL) in plant defence are less well known. Much progress has been made in understanding plant hormone signalling and plant disease resistance. However, these studies have mostly proceeded independently of each other, and there is limited knowledge regarding interactions between plant hormone-mediated signalling and responses to various pathogens. Here, we review the roles of hormones other than SA, JA and ET in plant defence and the interactions between hormone-mediated signalling, plant defence and pathogen virulence. We propose that these hormones may influence disease outcomes through their effect on SA or JA signalling.  相似文献   

20.
We studied the effects of plant diversity on abundance of invertebrate herbivores, parasitoids and predators in two grassland communities (one in Switzerland and one in Sweden) in which plant species richness and functional diversity have been experimentally manipulated. Among herbivores, the abundance of only the most sessile and specialised groups (leafhoppers and wingless aphids) was affected by plant diversity. At both sites, numbers of leafhoppers in sweep net samples showed a linear, negative relationship with plant species number whereas numbers of wingless aphids in suction samples increased with the number of plant functional groups (grasses, legumes, and non-legume forbs) present in the plot. Activity of carabid beetles and spiders (as revealed by pitfall catches) and the total number of predators in pitfalls at the Swiss site decreased linearly with increases in the number of plant species and plant functional groups. Abundance of more specialised enemies, hymenopteran parasitoids, was not affected by the manipulations of plant diversity. Path analysis and analysis of covariance indicated that plant diversity effects on invertebrate abundance were mostly indirect and mediated by changes in plant biomass and cover. At both sites, plant species composition (i.e. the identity of plant species in a mixture) affected numbers of most of the examined groups of invertebrates and was, therefore, a more important determinant of invertebrate abundance in grasslands than plant species richness per se or the number of plant functional groups. The presence of legumes in a mixture was especially important and led to higher numbers of most invertebrate groups. The similarity of invertebrate responses to plant diversity at the two study sites indicates that general patterns in abundance of different trophic groups can be detected across plant diversity gradients under different environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号