首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental work carried out on wastewater from a wastewater treatment plant (WWTP) showed that in a cross flow membrane bioreactor the gas/liquid transfer is highly dependent on the biomass concentration. In new biological wastewater membrane treatment processes (mostly using deep end membranes), the biomass concentration is usually about 15 g/L, which entails a decrease in the bioreactor aeration capacity by a factor of approximately four compared with clean water. The gas/liquid transfer may therefore become a limiting step in this type of process. To prevent the operating costs of the biological treatment from increasing, it is imperative that the oxygen transfer be optimized. Membrane experiments showed that the permeate flux is highly dependent on the biomass concentration and the tangential velocity in the membrane module.  相似文献   

2.
Fouling in submerged membrane bioreactors (MBRs) was studied under different operating conditions and with varying biomass characteristics. Fouling rates were determined using a flux-step method for seven biomass conditions with mixed liquor solids concentrations ranging from 4.3 to 13.5 g x l(-1), six permeate fluxes (5.5, 11.0, 16.5, 22.0, 27.5, and 33.0 l x m(-2) x h(-1)), and three membrane airflow velocities (0.07, 0.10, and 0.13 m x s(-1)). Statistical analysis was used to specify the degree of influence of each of the biomass characteristics (solids concentration, dewaterability, viscosity, particle size distribution, concentrations of protein and carbohydrate in the soluble microbial products, SMP, and extracellular polymer substances, EPS), the permeate flux and the membrane aeration velocity on the membrane fouling rate. Among all these variables, only the permeate flux, the solids concentration (correlated to the viscosity and the dewaterability), the carbohydrate concentration in the EPS, and the membrane aeration velocity were found to affect the fouling rate. The permeate flux had the greatest effect. A transitional permeate flux was observed between 16.5 and 33 l x m(-2) x h(-1), below which no significant fouling was observed regardless of the biomass characteristics, the permeate flux, and the membrane aeration velocity.  相似文献   

3.
4.
Oxygen limitation is one of the most frequent problems associated with the application of shaking bioreactors. The gas-liquid oxygen transfer properties of shaken 48-well microtiter plates (MTPs) were analyzed at different filling volumes, shaking diameters, and shaking frequencies. On the one hand, an optical method based on sulfite oxidation was used as a chemical model system to determine the maximum oxygen transfer capacity (OTR(max)). On the other hand, the Respiration Activity Monitoring System (RAMOS) was applied for online measurement of the oxygen transfer rate (OTR) during growth of the methylotropic yeast Hansenula polymorpha. A proportionality constant between the OTR(max) of the biological system and the OTR(max) of the chemical system were indicated from these data, offering the possibility to transform the whole set of chemical data to biologically relevant conditions. The results exposed "out of phase" shaking conditions at a shaking diameter of 1 mm, which were confirmed by theoretical consideration with the phase number (Ph). At larger shaking diameters (2-50 mm) the oxygen transfer rate in MTPs shaken at high frequencies reached values of up to 0.28 mol/L/h, corresponding to a volumetric mass transfer coefficient (k(L)a) of 1,600 1/h. The specific mass transfer area (a) increases exponentially with the shaking frequency up to values of 2,400 1/m. On the contrary, the mass transfer coefficient (k(L)) is constant at a level of about 0.15 m/h over a wide range of shaking frequencies and shaking diameters. However, at high shaking frequencies, when the complete liquid volume forms a thin film on the cylindric wall of the well, the mass transfer coefficient (k(L)) increases linearly to values of up to 0.76 m/h. Essentially, the present investigation demonstrates that the 48-well plate outperforms the 96-well MTP and shake flasks at widely used operating conditions with respect to oxygen supply. The 48-well plates emerge, therefore, as an excellent alternative for microbial cultivation and expression studies combining the advantages of both the high-throughput 96-well MTP and the classical shaken Erlenmeyer flask.  相似文献   

5.
The success of bioprocess implementation relies on the ability to achieve high volumetric productivities and requires working with high‐cell‐density cultivations. Elevated atmospheric pressure might constitute a promising tool for enhancing the oxygen transfer rate (OTR), the major growth‐limiting factor for such cultivations. However, elevated pressure and its effects on the cellular environment also represent a potential source of stress for bacteria and may have negative effects on product formation. In order to determine whether elevated pressure can be applied for enhancing productivity in the case of medium‐chain‐length polyhydroxyalkanoate (mcl‐PHA) production by Pseudomonas putida KT2440, the impact of a pressure of 7 bar on the cell physiology was assessed. It was established that cell growth was not inhibited by this pressure if dissolved oxygen tension (DOT) and dissolved carbon dioxide tension (DCT) were kept below ~30 and ~90 mg L?1, respectively. Remarkably, a little increase of mcl‐PHA volumetric productivity was observed under elevated pressure. Furthermore, the effect of DCT, which can reach substantial levels during high‐cell‐density processes run under elevated pressure, was investigated on cell physiology. A negative effect on product formation could be dismissed since no significant reduction of mcl‐PHA content occurred up to a DCT of ~540 mg L?1. However, specific growth rate exhibited a significant decrease, indicating that successful high‐cell‐density processes under elevated pressure would be restricted to chemostats with low dilution rates and fed‐batches with a small growth rate imposed during the final part. This study revealed that elevated pressure is an adequate and efficient way to enhance OTR and mcl‐PHA productivity. We estimate that the oxygen provided to the culture broth under elevated pressure would be sufficient to triple mcl‐PHA productivity in our chemostat system from 3.4 (at 1 bar) to 11 g L?1 h?1 (at 3.2 bar). Biotechnol. Bioeng. 2012; 109:451–461. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
Gas sparging directly into the culture-broth is not done in cell culture, except when the gas flow rate is very small, because much foaming occurs.During screening of defoaming methods, foam was observed to be broken up effectively when it made contact with a net fabricated from hydrophobic materials. Providing a highly efficient oxygen supply to suspension culture was tried using the new defoaming method. In a 5 1 reactor equipped with the foam-eliminating net fabricated with polysiloxane, oxygen was transferred at 21 mmole/l·h equivalent to an about forty-fold higher rate than in conventional surface aeration. This was equivalent to a consumption rate of 1×108 cells/ml, even at a low oxygen gas flow rate of 0.1 cm/s corresponding to a fourth of the gas flow rate when foam leaked through the net.Perfusion culture of rat ascites hepatoma cell JTC-1 was successfully carried out in the 51 scale culture system with the net and a hydrophobic membrane for cell filtration. The viable cell concentration reached 2.7×107 cells/ml after twenty-seven days, in spite of the nutrient-deficient condition of the lower medium exchange rate, that is, a working volume a day, and viability was maintained at more than 90%. In a 1.21 scale culture of mouse-mouse hybridoma cell STK-1, viable cell concentration reached 4×107 cells/ml. These results showed that oxygen transfer by gas sparging with defoaming was useful for high density suspension culture. A foam-breaking mechanism was proposed.Abbreviations Eagle's MEM Eagle's minimal essential medium - Dulbecco's modified Eagle MEM Dulbecco's modified Eagle minimal essential medium  相似文献   

7.
Unionid mussels are a guild of freshwater, sedentary filter-feeders experiencing a global decline in both species richness and abundance. To predict how these losses may impact stream ecosystems we need to quantify the effects of both overall mussel biomass and individual species on ecosystem processes. In this study we begin addressing these fundamental questions by comparing rates of ecosystem processes for two common mussel species, Amblema plicata and Actinonaias ligamentina, across a range of abundance levels and at two trophic states (low and high productivity) in stream mesocosms. At both low and high productivity, community respiration, water column ammonia, nitrate, and phosphorus concentrations, and algal clearance rates were all linearly related to overall mussel biomass. After removing the effects of biomass with ANCOVA, we found few differences between species. In a separate series of experiments, nutrient excretion (phosphorus, ammonia, and molar N:P) and biodeposition rates were only marginally different between species. For the species studied here, functional effects of unionids in streams were similar between species and linearly related to biomass, indicating the potential for strong effects when overall mussel biomass is high and hydrologic residence times are long.  相似文献   

8.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   

9.
Gasification followed by syngas fermentation is a unique hybrid process for converting lignocellulosic biomass into fuels and chemicals. Current syngas fermentation faces several challenges with low gas–liquid mass transfer being one of the major bottlenecks. The aim of this work is to evaluate the performance of hollow fiber membrane biofilm reactor (HFM-BR) as a reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (KLa) of the HFM-BR was determined at abiotic conditions within a wide range of gas velocity/flowrate passing through the hollow fiber lumen and liquid velocity/flowrate passing through the membrane module shell. The KLa values of the HFM-BR were higher than most reactor configurations such as stir tank reactors and bubble columns. A continuous syngas fermentation of Clostridium carboxidivorans P7 was implemented in the HFM-BR system at different operational conditions, including the syngas flow rate, liquid recirculation between the module and reservoir, and the dilution rate. It was found that the syngas fermentation performance such as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid depended not only on the mass transfer efficiency but also the characteristics of biofilm attached on the membrane module (biofouling or abrading of the biofilm). The HFM-BR results in a highest ethanol concentration of 23.93 g/L with an ethanol to acetic acid ratio of 4.79. Collectively, the research shows the HFM-BR is an efficient reactor system for syngas fermentation with high mass transfer.  相似文献   

10.
Abstract: The biological activity of human medulloblastoma tumor gangliosides very likely involves the interaction of these molecules with host cells in the tumor microenvironment. To trace the hypothesized intercellular transfer of shed medulloblastoma gangliosides, we used an in vitro dual-chamber culture system in which the tumor cells, the shed gangliosides, and the target cells to which they might bind would not be perturbed during the transfer process. We observed that under these unmanipulated conditions, gangliosides were shed by the Daoy medulloblastoma cell line (∼300 pmol/108 cells/h), traversed the chamber membrane, and stably bound to the target fibroblasts at the very high density of 107 molecules per cell within 48 h. To determine if this substantial intercellular transfer of shed gangliosides, with its potential of modifying target cell function, could be blocked, we evaluated a new inhibitor of glucosylceramide synthase, dl - threo -1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP). PPPP (1.0 µ M ) reduced (90%) Daoy cell ganglioside content strikingly, without causing toxicity or inhibiting cell proliferation. Subsequently, ganglioside shedding by the medulloblastoma cells was diminished significantly (to ∼50 pmol/108/h), and binding of radiolabeled shed medulloblastoma gangliosides to target fibroblasts was consequently almost completely abrogated. We conclude that the shedding and transfer of potentially biologically active human medulloblastoma gangliosides can be diminished effectively by PPPP.  相似文献   

11.
The presented study assessed the heavy metal contamination risk in a former sludge deposit field of the River Ruhr in Essen, Germany. Therefore, the temporal and spatial distribution in soils and plants, chemical fractionation, mobilization potential, and transfer characteristics have been investigated. Soil samples, roots and shoots of rushes (Juncus sp.), and stem wood disks of willows (Salix sp.) were analyzed for Zn, Cu, Pb, Ni, Cr, and Cd. Plant available and mobile heavy metal portions have been determined using a sequential extraction procedure. The results show that the soils and the rushes are highly contaminated, although there is a considerable decrease compared to initial concentrations some 20 years ago. The willows show only small heavy metal enrichment. pH induced mobilization potential in soil is high for Cd, Zn and Ni. Additionally, these elements contain high portions of plant-available fractions. High transfer rates from soil to roots and very high rates from roots to shoots of rushes have been determined for Cd and Zn, indicating an accumulation of these elements in shoots of rushes. The rushes reflect the temporal and spatial heavy metal distribution in soil and might thus be used as a bioindicator or for phytoremediation.  相似文献   

12.
To control container-breeding mosquitoes in the small island of Minnajima (0.56 km2), northern Okinawa, Japan, laboratory-reared adults (aged 7-10 days) of Toxorhynchites splendens (Palawan strain), a mosquito with predatory larvae, were released repeatedly during 1984, 1986 and 1987. Thirteen species of mosquitoes (Diptera: Culicidae) occurred in artificial containers, ground pools or crab-holes on the island, the predominant species being Aedes (Stegomyia) albopictus and Culex (Culex) quinquefasciatus. Predatory mosquito larvae of Culex (Lutzia) fuscanus and Cx (Lt.) halifaxii were found commonly in wet containers. In the first year of study, during a period of 54 days from 13 May to 5 July 1984, totals of 879 female and 806 male adults of Tx.splendens were released on six occasions. Similarly, between 29 April and 30 August 1986, totals of 2920 female and 2878 male adult Tx.splendens were released. In the third study year, totals of 2041 female and 1783 male Tx.splendens were released on eight occasions during 199 days from 23 April to 7 November 1987. After adult releases at two sites, the immature stages of Tx.splendens were found in 164 out of 502 traps in 1984, 421 out of 933 traps in 1986, and 151 out of 502 traps in 1987. The number of immatures of Tx.splendens present in each trap varied from 1 to 40 in 1984, 1 to 29 in 1986 and 1 to 9 in 1987. Numbers of immatures of the target species found in the traps during August-September averaged 71.9/trap/month in 1984, 114.7/trap/month in 1986 and 36.0/trap/month in 1987, significantly less in the traps with Tx.splendens than in those without them. The present field studies indicated that, in this small island, approximately 250 adult female and 200 male Tx.splendens per month should be released from April to November, and the releases should be carried out every year, in order to control effectively the target mosquitoes Ae.albopictus and Cx quinquefasciatus breeding in artificial containers in Minnajima.  相似文献   

13.
The effects of fire on forest structure and composition were studied in a severely fire-impacted landscape in the eastern Amazon. Extensive sampling of area forests was used to compare structure and compositional differences between burned and unburned forest stands. Burned forests were extremely heterogeneous, with substantial variation in forest structure and fire damage recorded over distances of <50 m. Unburned forest patches occurred within burned areas, but accounted for only six percent of the sample area. Canopy cover, living biomass, and living adult stem densities decreased with increasing fire inrensiry / frequency, and were as low as 10–30 percent of unburned forest values. Even light burns removed >70 percent of the sapling and vine populations. Pioneer abundance increased dramatically with burn intensity, with pioneers dominating the understory in severely damaged areas. Species richness was inversely related to burn severity, but no clear pattern of species selection was observed. Fire appears to be a cyclical event in the study region: <30 percent of the burned forest sample had been subjected to only one burn. Based on estimated solar radiation intensities, burning substantially increases fire susceptibility of forests. At least 50 percent of the total area of all burned forests is predicted to become flammable within 16 rainless days, as opposed to only 4 percent of the unburned forest. In heavily burned forest subjected to recurrent fires, 95 percent of the area is predicted to become flammable in <9 rain-free days. As a recurrent disturbance phenomenon, fire shows unparalleled potential to impoverish and alter the forests of the eastern Amazon.  相似文献   

14.
Lactating mice were fed either a low fat or a high fat diet. Milk samples were collected and the composition was examined. Triglyceride and free fatty acid contents were greatly reduced in the milks of high fat diet group, while protein and lactose contents were almost the same between both diet groups. Although the energy content of each component was also lower in milk of high fat diet group, there was apparently no significant difference in the growth of the pups raised by either diet group. This discrepancy might be in part explained by a hypothesis that the pups might monitor calorie content in milk and keep suckling until the energy intake reaches their satisfaction. Moreover, nearly the same amounts of major milk fat globule membrane proteins MFG-E8 and butyrophilin were shown to be present in the milks from both diet groups and gene expression of both proteins in the mammary glands were also indistinguishable, suggesting that production of major MFGM components is not simply related to fat production and secretion.  相似文献   

15.
Understanding species differences in the placental transfer of monoclonal antibodies is important to inform species selection for nonclinical safety assessment, interpret embryo‐fetal changes observed in these studies, and extrapolate their human relevance. Data presented here for a fully human immunoglobulin G2 monoclonal antibody (IgG2X) revealed that, during organogenesis, in both the cynomolgus monkey (gestation day 35 [gd35]) and the rat (gd10) the extent of IgG2X placental transfer (approximately 0.5% maternal plasma concentration, MPC) was similar to the limited published human data for endogenous IgG. At this early gestational stage, IgG2X placental transfer was approximately 6‐fold higher in the rabbit (gd10). By the end of organogenesis, rat embryonic plasma concentrations (gd16) exceeded those in the cynomolgus monkey (gd50) by approximately 3‐fold. These data suggest that relative to the cynomolgus monkey, the rabbit (and to a lesser extent the rat) may overestimate potential harmful effects to the human embryo during this critical period of development. Beyond organogenesis, fetal IgG2X plasma concentrations increased approximately 10‐fold early in the second trimester (gd50–70) in the cynomolgus monkey and remained relatively unchanged thereafter (at approximately 5% MPC). Late gestational assessment was precluded in rabbits due to immunogenicity, but in rats, fetal IgG2X plasma concentrations increased more than 6‐fold from gd16 to gd21 (reaching approximately 15% MPC). In rats, maternal exposure consistent with that achieved by ICH S6(R1) high‐dose selection criteria resulted in embryonic plasma concentrations, reaching pharmacologically relevant levels during organogenesis. Furthermore, dose proportional exposure in both mothers and embryos indicated that this was unlikely to occur at the lower therapeutic dose levels used in humans  相似文献   

16.
Molecules transferred from males to females via seminal fluids are important to the study of insect reproduction because they affect female physiology, reproductive behavior, and longevity. These molecules (seminal fluid molecules or SFMs) interest applied entomologists because of their potential use in insect control. SFMs are also interesting because of their relatively rapid evolution and important role in post-mating sexual selection. We studied SFMs in Diaprepes abbreviatus, a major pest of numerous plant species of economic importance. Using radiolabeled-methionine (35S), we found that D. abbreviatus males synthesized proteins de novo in their reproductive tissues after mating. Males that were fed radiolabeled methionine transferred radioactivity to females beginning within the first 10 min of mating. Male-derived substances are absorbed from the female's reproductive tract into the hemolymph and circulated throughout the body, but are found primarily in the eggs and ovaries. As a result, SFMs may be a useful means of both horizontal (to mates) and vertical transfer (to offspring) of control agents between conspecifics.  相似文献   

17.
18.
The purpose of this pilot study was to explore the utility of the mammalian swine model under simulated intensive care unit (sICU) conditions and mechanical ventilation (MV) for assessment of the trajectory of circadian rhythms of sedation requirement, core body temperature (CBT), pulmonary mechanics (PM) and gas exchange (GE). Data were collected prospectively with an observational time-series design to describe and compare circadian rhythms of selected study variables in four swine mechanically ventilated for up to seven consecutive days. We derived the circadian (total variance explained by rhythms of τ between 20 and 28?h)/ultradian (total variance explained by rhythms of τ between 1 and <20?h) bandpower ratio to assess the robustness of circadian rhythms, and compare findings between the early (first 3 days) and late (subsequent days) sICU stay. All pigs exhibited statistically significant circadian rhythms (τ between 20 and 28?h) in CBT, respiratory rate and peripheral oxygen saturation, but circadian rhythms were detected less frequently for sedation requirement, spontaneous minute volume, arterial oxygen tension, arterial carbon dioxide tension and arterial pH. Sedation did not appear to mask the circadian rhythms of CBT, PM and GE. Individual subject observations were more informative than group data, and provided preliminary evidence that (a) circadian rhythms of multiple variables are lost or desynchronized in mechanically ventilated subjects, (b) robustness of circadian rhythm varies with subject morbidity and (c) healthier pigs develop more robust circadian rhythm profiles over time in the sICU. Comparison of biological rhythm profiles among sICU subjects with similar severity of illness is needed to determine if the results of this pilot study are reproducible. Identification of consistent patterns may provide insight into subject morbidity and timing of such therapeutic interventions as weaning from MV.  相似文献   

19.
Intact Phycomyces blaskesleeanus mycelia are capable of reducing extracellular ferricyanide and this transmembrane reduction is an enzymatic process, which is enhanced by the presence of 10 mM lactate. It is modulated in response to intracellular iron levels and negatively regulated by iron and copper. It is inhibited by NEM, p CMB, iodoacetate, Zn2+, Cd2+, dicumarol, and capsaicine analog, but not by cloroquine, and activated by Ca2+, Mg2+, Na+, and K+. Ferricyanide reduction was concomitant with proton release into the extracellular medium, both processes being greatly promoted by vitamin K3 following hyperbolic saturation kinetics with regard to ferricyanide concentration. No stoichiometric proton release was observed with regard to ferricyanide reduction in the absence or the presence of vitamin K3. Proton release coupled with ferricyanide reductase activity does not appear to be due to H+-ATPase. The relevance of these findings to the relationship between the two processes is discussed.  相似文献   

20.
The objective was to analyse the asexual spread of Tephrocactus aoracanthus (Cactaceae) related to run‐off triggered by torrential summer rains in a hyper‐arid desert. Through a manipulative essay, 30 joints (asexual dispersing stems) were placed in the mainstream of an alluvial fan and 30 joints out of the alluvial fan, without run‐off influence (control). All joints were labelled, and their weight and diameter were measured. After each rain event with run‐off, joints were surveyed identifying their spatial coordinates and environmental context. For this, two factors with two levels each one was selected: position respect to both microrelief (channels with concentrated run‐off, or inter‐channels as flat areas between channels, without run‐off) and vegetation (entangled or not entangled in shrubs). Through a geographic information system, changes in slope angle and rugosity of terrain were analysed. Linear regressions were performed between the partial displacement of joints and their weight and diameter, grouped according to environmental context before each rainfall. None of the joints of the control treatment were moved, but all joints located in the mainstream were relocated. Three rainfall events triggered a mean displacement of 480.4 ± 210.0 m (SD); 103.0 ± 138.9 m (SD) and 33.2 ± 52.3 m (SD), respectively. The mean accumulated displacement of all joints during the experience was 577.12 ± 220.0 m (SD). As they moved, the joints passed through several different environmental contexts, increasing the proportion of joints entangled in vegetation and in inter‐channel position. Until rooted, joints could be displaced by run‐off in an anisotropic process, with an evident effect of slope angle and rugosity of terrain. On the other hand, no direct relationship was found between the displacement and the magnitude of the event, or both the size and the weight of joints. We assess the strategies related to the dispersal mechanism of clonal plants, related to conditions and enabling its agamic dispersal over long distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号