首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Summary By using somatic cell hybrids between HPRT deficient hamster cells and fibroblasts derived from a patient with a X/22 translocation t(X;22)(q13;q112), we have assigned the genes for human ARSA, DIA 1, and ACO 2 to region q112qter of human chromosome 22 and the gene for human PGK close to the breakpoint in band Xq13.  相似文献   

2.
The gene responsible for Menkes syndrome has been assigned to Xq13 by a combination of comparative mapping and linkage analysis. A previous report has mapped the translocation breakpoint associated with the disease in a female patient to an interval delimited by PGK1 and a group of six more proximal Xq13 markers, including DXS56. We have characterized a number of PGK1- or DXS56-positive YACs, from which we have generated six new markers. One of them identifies a small overlap region between a PGK1-positive YAC and three DXS56-positive YACs, distal to the Menkes breakpoint. A 560-kb region covered by a DXS56-positive YAC has been restriction-mapped and subcloned, disclosing a 187-kb MluI fragment astride the breakpoint. A probe mapping distal to the rearrangement in the same interval reveals altered PGFE fragments in a hybrid constructed from the translocation patient's DNA. We describe the development of a cosmid contig extending 150 kb from a nearby CpG island across the breakpoint. This contig includes four adjacent clones displaying cross-specific hybridization.  相似文献   

3.
Summary During a systematic chromosomal survey of 167 unrelated boys with the X-linked recessive Menkes disease (MIM 309400), a unique rearrangement of the X chromosome was detected, involving an insertion of the long arm segment Xq13.3-q21.2 into the short arm at band Xp11.4, giving the karyotype 46,XY,ins(X) (p11.4q13.3q21.2). The same rearranged X chromosome was present de novo in the subject's phenotypically normal mother, where it was preferentially inactivated. The restriction fragment length polymorphism and methylation patterns at DXS255 indicated that the rearrangement originated from the maternal grandfather. Together with a previously described X;autosomal translocation in a female Menkes patient, the present finding supports the localization of the Menkes locus (MNK) to Xq13, with a suggested fine mapping to sub-band Xq13.3. This localization is compatible with linkage data in both man and mouse. The chromosomal bend associated with the X-inactivation center (XIC) was present on the proximal long arm of the rearranged X chromosome, in line with a location of XIC proximal to MNK. Combined data suggest the following order: Xcen-XIST(XIC), DXS128-DXS171, DXS56-MNK-PGK1-Xqter.  相似文献   

4.
Women with balanced translocations between the long arm of the X chromosome (Xq) and an autosome frequently suffer premature ovarian failure (POF). Two "critical regions" for POF which extend from Xq13-->q22 and from Xq22-->q26 have been identified using cytogenetics. To gain insight into the mechanism(s) responsible for ovarian failure in women with X;autosome translocations, we have molecularly characterized the translocation breakpoints of nine X chromosomes. We mapped the breakpoints using somatic cell hybrids retaining the derivative autosome and densely spaced markers from the X-chromosome physical map. One of the POF-associated breakpoints in a critical region (Xq25) mapped to a sequenced PAC clone. The translocation disrupts XPNPEP2, which encodes an Xaa-Pro aminopeptidase that hydrolyzes N-terminal Xaa-Pro bonds. XPNPEP2 mRNA was detected in fibroblasts that carry the translocation, suggesting that this gene at least partially escapes X inactivation. Although the physiologic substrates for the enzyme are not known, XPNPEP2 is a candidate gene for POF. Our breakpoint mapping data will help to identify additional candidate POF genes and to delineate the Xq POF critical region(s).  相似文献   

5.
Magnesium-dependent hypocalcaemia (HSH), a rare inherited disease, is caused by selective disorders of magnesium absorption. Both X-linked and autosomal recessive modes of inheritance have been reported for HSH; this suggests a genetically heterogeneous condition. A balanced de novo t(X;9)(p22;q12) translocation has been reported in a female manifesting hypomagnesemia with secondary hypocalcemia. In a lymphoblastoid cell line, derived from this patient, the normal X chromosome is preferentially inactivated, suggesting that the patient's phenotype is caused by disruption of an HSH gene in Xp22. In an attempt to define more precisely the position of the X breakpoint, we have constructed a hybrid cell line retaining the der(X)(Xqter-Xp22.2::9q12-9qter) in the absence of the der(9) and the normal X chromosome. Southern blot analysis of this hybrid and in situ hybridization on metaphase chromosomes have localized the breakpoint between DXS16 and the cluster (DXS207, DXS43), in Xp22.2. Thus, if a gene involved in HSH resides at or near the translocation breakpoint, our findings should greatly facilitate its isolation.  相似文献   

6.
A Hispanic girl with Lowe oculocerebrorenal syndrome (OCRL), an X-linked recessive condition characterized by cataracts, glaucoma, mental retardation, and proteinuria, is reported. A balanced X;20 chromosomal translocation with the X chromosome breakpoint at q26.1 was found with high-resolution trypsin-Giemsa banding. Somatic cell hybridization was used to separate the X chromosome derivative and the chromosome 20 derivative in order to position, with respect to the translocation breakpoint, several DNA loci that are linked to the Lowe syndrome locus (Xq24-q26). DXS10 and DXS53 were found to be distal to the breakpoint, whereas DXS37 and DXS42 were located proximal to it. These studies suggest that the OCRL locus lies in the region between these probes. The translocation chromosome originated from an unaffected male without a visible translocation, indicating that the most likely cause of OCRL in this patient is the de novo translocation that disrupted the OCRL locus.  相似文献   

7.
8.
Alagille syndrome is a clinically defined, dominantly inherited disorder affecting the liver, heart, face, eye, and vertebrae. Alagille syndrome has previously been localized to the short arm of chromosome 20, on the basis of reports of a small number of patients with chromosomal deletions of 20p. We undertook a cytogenetic study of patients with Alagille syndrome and identified a family in which a cytologically balanced translocation between chromosomes 2 and 20, 46,XX/XY, t(2;20)(q21.3;p12), is segregating concordantly with the disease. The breakpoint on chromosome 20p in this t(2;20) is consistent with the shortest region of overlap demonstrated in the reported deletion patients. This is the first report of a translocation associated with 20p and Alagille syndrome, and this rearrangement confirms the location of the Alagille disease gene at 20p12. We have established a somatic cell hybrid from a lymphoblastoid cell line from one of the affected individuals that contains the derivative chromosome 20 (20qter-->p12::2q21.3-->qter) but not the derivative chromosome 2, the normal chromosome 2, or the normal chromosome 20. Southern blot and PCR analysis of probes and sequences from 20p have been studied to define the location of the translocation breakpoint. Our results show that the breakpoint lies distal to D20S61 and D20S56 within band 20p12.  相似文献   

9.
The Lowe oculocerebrorenal syndrome (OCRL) is characterized by congenital cataract, mental retardation, and renal tubular dysfunction. We are using the approaches of linkage analysis, mapping with somatic cell hybrids, and long-range restriction mapping to determine the order of Xq24-q26 markers with respect to each other and to the OCRL locus. DXS42 and DXS100 are proximal to the translocation breakpoint in a female patient with OCRL and a de novo translocation t(X;3)(q25;q27). DXS10, DXS86, HPRT, and DXS177 are distal to the breakpoint. These flanking markers show tight linkage to the disease locus in 11 families segregating for OCRL. Results from field inversion gel analysis show that DXS86 and DXS10 share a 460-kb BssHII fragment. Multipoint analysis to determine the position of HPRT with respect to (DXS10,DXS86) suggests that HPRT is proximal to (DXS10,DXS86). We propose the following order for markers in Xq24-q26: Xcen-(DXS42,DXS37,DXS100)-OCRL-DXS53 -HPRT-[(DXS10,DXS86),DXS177]-Xqter. The identification of additional tightly linked flanking markers extends the number of markers available for use in genetic counseling and begins to define the physical map of the region containing the gene for OCRL.  相似文献   

10.
The Lowe oculocerebrorenal syndrome (OCRL) is characterized by congenital cataract, mental retardation, and defective renal tubular function. A map assignment of OCRL to Xq24-q26 has been made previously by linkage analysis with DXS42 at Xq24-q26 (theta = 0, z = 5.09) and with DXS10 at Xq26 (theta = 0, z = 6.45). Two additional families were studied and three additional polymorphisms were identified at DXS42 by using a 35-kb sequence isolated with the probe detecting the original polymorphism at DXS42. With additional OCRL families made informative for DXS42, theta remained 0 with z = 6.63; and for DXS10 theta = 0.03 and z = 7.07. Evidence for placing OCRL at Xq25 also comes from a female with Lowe syndrome and an X;3 translocation. We have used the Xq25 breakpoint in this patient to determine the position of OCRL relative to the two linked markers. Each derivative chromosome was isolated away from its normal counterpart in somatic cell hybrids. DXS42 was mapped to the derivative chromosome X containing Xpterq25, and DXS10 was mapped to the derivative chromosome 3 containing Xq25-qter. The markers DXS10 and DXS42 therefore show tight linkage with OCRL in six families and flank the Xq25 breakpoint in a female patient with an X;3 translocation. Linkage analysis with flanking markers was used to assess OCRL carrier status in women at risk. Results, when compared with carrier determination by ophthalmologic examination, indicated that the slit-lamp exam can be a sensitive and specific method of carrier determination in many cases.  相似文献   

11.
High resolution cytogenetics, microsatellite marker analyses, and fluorescence in situ hybridization were used to define Xq deletions encompassing the fragile X gene, FMR1, detected in individuals from two unrelated families. In Family 1, a 19-year-old male had facial features consistent with fragile X syndrome; however, his profound mental and growth retardation, small testes, and lover limb skeletal defects and contractures demonstrated a more severe phenotype, suggestive of a contiguous gene syndrome. A cytogenetic deletion including Xq26.3–q27.3 was observed in the proband, his phenotypically normal mother, and his learning-disabled non-dysmorphic sister. Methylation analyses at the FMR1 and androgen receptor loci indicated that the deleted X was inactive in > 95% of his mother’s white blood cells and 80–85% of the sister’s leukocytes. The proximal breakpoint for the deletion was approximately 10 Mb centromeric to FMR1, and the distal breakpoint mapped 1 Mb distal to FMR1. This deletion, encompassing ∼13 Mb of DNA, is the largest deletion including FMR1 reported to date. In the second family, a slightly smaller deletion was detected. A female with moderate to severe mental retardation, seizures, and hypothyroidism, had a de novo cytogenetic deletion extending from Xq26.3 to q27.3, which removed ∼12 Mb of DNA around the FMR1 gene. Cytogenetic and molecular data revealed that ∼50% of her white blood cells contained an active deleted X. These findings indicate that males with deletions including Xq26.3–q27.3 may exhibit a more severe phenotype than typical fragile X males, and females with similar deletions may have an abnormal phenotype if the deleted X remains active in a significant proportion of the cells. Thus, important genes for intellectual and neurological development, in addition to FMR1, may reside in Xq26.3–q27.3. One candidate gene in this region, SOX3, is thought to be involved in neuronal development and its loss may partly explain the more severe phenotypes of our patients. Received: 19 December 1996 / Accepted: 13 March 1997  相似文献   

12.
A t(X:15)(q23;q25) was detected during cytogenetic investigation of a lymphoblastoid cell line established from a female patient with Fanconi anemia. The translocation was apparently balanced at passage 300 and unbalanced at passage 13. A chromatid exchange between both the normal and the der(15), between the centromere and band 15q25, may explain these results. Replication studies, following BrdU incorporation, indicate that the segment Xq23----qter from the der(15) is early replicating whereas segment Xpter----q23 from the der(X) is late replicating. Since the normal X was early replicating, it is concluded that the segment of the long arm of chromosome X, separated from its inactivation center by the translocation, was reactivated. This interpretation is confirmed by the methylation patterns of the hypoxanthine phosphoribosyltransferase gene (HPRT), mapped on Xq26, which corresponds to that of an active gene, whereas that of phosphoglycerate kinase (PGK1), which remained on the der(X), corresponds to that of an inactive gene. This is the first example of reactivation of a segment of the X chromosome following a structural rearrangement in somatic cells.  相似文献   

13.
A possible exception to the critical region hypothesis.   总被引:2,自引:1,他引:1       下载免费PDF全文
Cytogenetic studies were done on a 5-year-old female with multiple congenital anomalies and mental retardation, revealing an unbalanced X/11 translocation. Her mother and phenotypically normal sister carry the balanced form of the translocation, while her brother has a normal 46,XY karyotype. Banding studies showed the breakpoints to be Xq22 and 11q13. These are remarkable for the following reasons: (1) the X breakpoint is within the critical region of the X chromosome, yet the balanced carrier does not manifest gonadal dysgenesis; and (2) the proband was trisomic for most of the long arm of chromosome 11. Late-replication studies of cells from the two balanced carriers showed inactivation of the normal X.  相似文献   

14.
In order to better characterize the chromosomic rearrangement of an unbalanced 45XX t(X;22) (q28;q11) DiGeorge patient, a somatic hybrid clone segregating the translocated chromosome was constructed and investigated using X and 22 linked markers. Our study demonstrated that this de novo translocation was from paternal origin. The breakpoint was assigned between DXS296 and IDS loci at Xq28 and between D22S9 and BCRL2 at 22q11. This observation and published data allow to locate a "critical region" for DiGeorge syndrome between these two last loci on 22q11. Our hybrid clone may be a useful tool for mapping new probes arising in this region.  相似文献   

15.
A specific chromosomal translocation, t(2;13)(q35;q14), is present in tumor cells from about one-half of children with alveolar rhabdomyosarcoma, who generally have widely disseminated disease at diagnosis. Using a series of six DNA probes from five loci previously assigned to bands 13q12----q14, we have localized the translocation breakpoint on chromosome 13 by in situ hybridization. Each probe was used to examine metaphase spreads from two or more rhabdomyosarcoma cell lines that have the t(2;13), as well as from control lymphoblastoid cell metaphases. All six probes bound to chromosome 13q12----q14 in the control cell line, but showed no appreciable hybridization to other sites. With rhabdomyosarcoma metaphases, cDNA clones of the retinoblastoma susceptibility gene (RB1) and the esterase D gene (ESD), as well as the arbitrary genomic fragment 7D2 (D13S10), showed specific hybridization to the normal chromosome 13 and the der(2) marker, but not to the der(13). By contrast, the genomic fragments HU10 (D13S6) and 7F12 (D13S1) hybridized specifically to the normal chromosome 13 and the der(13), but not to the der(2). Thus, the breakpoint of this translocation lies distal to D13S6 and D13S1 and proximal to ESD, RB1, and D13S10. Our data indicate that the locus affected by the translocation breakpoint on chromosome 13, which we have termed RMS, is physically distinct from the RB1 locus and is, in fact, proximal to ESD, which others have placed at least 10(6) bp proximal to RB1. The consistent presence of the der(2) marker chromosome, coupled with occasional loss of the der(13), suggests that the RMS gene, or at least a critical component, moves to chromosome 2 in tumors with this translocation.  相似文献   

16.
17.
Precise localization of NF1 to 17q11.2 by balanced translocation.   总被引:25,自引:11,他引:14       下载免费PDF全文
A female patient is described with von Recklinghausen neurofibromatosis (NF1) in association with a balanced translocation between chromosome 17 and 22 [46,XX,t(17;22)(q11.2;q11.2)]. The breakpoint in chromosome 17 is cytogenetically identical to a previously reported case of NF1 associated with a 1;17 balanced translocation and suggests that the translocation events disrupt the NF1 gene. This precisely maps the NF1 gene to 17q11.2 and provides a physical reference point for strategies to clone the breakpoint and therefore the NF1 gene. A human-mouse somatic cell hybrid was constructed from patient lymphoblasts which retained the derivative chromosome 22 (22pter----22q11.2::17q11.2----17qter) but not the derivative 17q or normal 17. Southern blot analysis with genes and anonymous probes known to be in proximal 17q showed ErbA1, ErbB2, and granulocyte colony-stimulating factor (CSF3) to be present in the hybrid and therefore distal to the breakpoint, while pHHH202 (D17S33) and beta crystallin (CRYB1) were absent in the hybrid and therefore proximal to the breakpoint. The gene cluster including ErbA1 is known to be flanked by the constitutional 15;17 translocation breakpoint in hybrid SP3 and by the acute promyelocytic leukemia (APL) breakpoint, which provides the following gene and breakpoint order: cen-SP3-(D17S33,CRYB1)-NF1-(CSF3,ERBA1, ERBB2)-APL-tel. The flanking breakpoints of SP3 and API are therefore useful for rapidly localizing new markers to the neurofibromatosis critical region, while the breakpoints of the two translocation patients provide unique opportunities for reverse genetic strategies to clone the NF1 gene.  相似文献   

18.
We have recently mapped the human FCGR2 gene to chromosome 1 bands q23-q24. In situ hybridization of FCGR2 cDNA with a cell line containing a t(1;19)(g23;p13) derived from a patient with pre-B ALL has allowed a more accurate localization of this gene to chromosome 1 band q23. Furthermore, this study indicated a splitting of the FCGR2 gene or gene cluster by the t(1;19). However, Southern analysis showed no genetic rearrangement when compared with a karyotypically normal Epstein-Barr virus (EBV)-transformed cell line from the same patient. This suggests that the translocation breakpoint does not occur within the coding region of this gene.  相似文献   

19.
X-linked anhidrotic ectodermal dysplasia and de novo t(X;1) in a female   总被引:3,自引:0,他引:3  
Summary A de novo translocation (X;1)(q13.1;p36.33) was found in a 2-year-old girl with typical clinical features of X-linked anhidrotic ectodermal dysplasia (EDA). The breakpoint at Xq13.1 is approximately the same as has been described in 2 other EDA females with X;autosome translocations.  相似文献   

20.
Aarskog syndrome has been mapped to Xq13 on the basis of a patient carrying an Xq13:8p21.2 translocation. We have identified a new microsatellite marker in a clone mapping to this region (HX60;DXS566). Using primers flanking this microsatellite along with primers detecting a microsatellite at PGK1P1 and DXS255, and DXS72, we have performed a multipoint analysis in a large kindred with Aarskog syndrome. Our results suggest that the Aarskog locus lies proximal to Xq13. This is supported by the recent redefining of the breakpoint of the original translocation as between DXS14 (Xp11.21-p11.1) and DXS146 (Xp11.23-p11.22).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号