首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Three genes hemE, hemF, hemG taking part in the porphyrin biosynthesis of Bacillus subtilis were mapped by two- and tree-factor transduction crosses. The gene hemE determines uroporphyrinogen decarboxylase (EC 4.1.1.37) the gene hemF coproporyphyrinogen oxidase (EC 1.3.3.3) and the gene hemG, ferrochelatase (EC 4.99. 1.1) enzymes. The loci hemE, hemF, hemG, are not linked to hemA locus and located near the argC and metD loci.  相似文献   

2.
Summary The gene hemD taking part in the formation of uroporphyrinogen III from porphobilinogen was mapped by two-and three-factor transduction crosses in Bacillus subtilis. This gene codes uroporphyrinogen III cosynthase. The gene hemD is linked to the hemA locus and is located between the hemA and pheA loci.  相似文献   

3.
Two Fix mutants of pea (Pisum sativum L.) which are unable to fix molecular nitrogen, E135f (sym-13) and Sprint-2Fix (sym-31), were crossed to create the doubly homozygous recessive line, named RBT (sym-13, sym-31). The ultrastructural organization of nodules of the RBT line was compared with that of each of the two parental mutant lines and with the original wild-type genotypes of the cultivars Sparkle and Sprint-2. It was shown that the RBT line is similar to the mutant line Sprint-2Fix in having abnormal symbiosome composition and bacteroids with relatively undifferentiated morphology. Because the phenotypic manifestation of the sym-31 mutant allele suppresses the phenotypic manifestation of the sym-13 mutant allele, it is concluded that the function of the gene Sym-31 (which is mutated in the Sprint-2Fix line) is necessary at an earlier stage of symbiosome development than the gene Sym-13 (which is mutant in the E135f line). Received: 28 October 1996 / Accepted: 22 January 1997  相似文献   

4.
We propose a model to describe the changes taking place in biochemical processes/events to explain the development of heterocyst and nitrogenase in a diazotrophic cyanobacterium Anabaena variabilis. For this purpose, a mutant strain of A. variabilis lacking heterocyst differentiation and incapable of growth with dinitrogen as the sole source of nitrogen has been isolated after nitrosoguanidine (NTG) mutagenesis and selection by penicillin enrichment. The mutant strain (Het Fix) thus isolated has morphological variation and was incapable of reducing acetylene under anaerobic conditions, indicating its mutational loss of the process of nitrogen fixation. The Het Fix mutant strain had reduced glutamine synthetase (transferase) activity compared with its wild-type counterpart, suggesting a link between nif gene expression and the expression of gln A, the structural gene of GS. The Het Fix mutant strain compared with its wild-type strain also had an extremely high level of phycobiliprotein and a low level of carotenoids. Furthermore, the coiling of vegetative filaments in the Het Fix mutant strain, which reduced the surface area to be exposed to light, was a direct indication of the chromatic adaptation, because the mutant strain was found to be photosensitive, showing bleaching of the cells under high light intensity. Received: 13 December 2000 / Accepted: 9 February 2001  相似文献   

5.
Orotidine-5′-phosphate decarboxylase (OMP decarboxylase) catalyses the final step in the pyrimidine biosynthesis, the conversion of orotidine-5′-phosphate (OMP) to uridine-5′-phosphate. The ura3 gene of Aureobasidium pullulans, encoding OMP decarboxylase, was isolated from an Aureobasidium genomic library constructed in the plasmid pBlueskriptSK. The ura3 gene of A. pullulans has an open reading frame of 271 amino acid residues. Analysis of the sequence revealed the presence of two introns. In the predicted amino acid sequence there are regions of strong homology to the equivalent genes of Aspergillus niger, Neurospora crassa, Phycomyces blakesleeanus and Homo sapiens. The ura3 gene is the third Aureobasidium gene that has been cloned and analysed. We have also isolated ura3 mutants by selection of ethyl methanesulphonate mutagenised cells on 5-fluoroorotic acid. Transformation of these A. pullulans mutant strains to prototrophy showed the functionality of the cloned gene. Received: 16 July 1999 / Revision received: 20 September 1999 / Accepted: 24 September 1999  相似文献   

6.
Physiological alterations and regulation of heterocyst and nitrogenase formation have been studied in Het Fix mutant strain of diazotrophic cyanobacterium Anabaena variabilis. Het Fix mutant strain of A. variabilis has been isolated by N-methyl-N′-nitro-N″-nitrosoguanidine (NTG) mutagenesis and was screened with the penicillin enrichment (500 μg ml−1). Growth, heterocyst differentiation, nitrogenase and glutamine synthetase (biosynthetic and transferase), 14CO2-fixation, nitrate reductase (NR), nitrite reductase (NiR), glucose-6-phosphate dehydrogenase (G6PDH), and isocitrate dehydrogenase (IDH) activities, and NO3 , NO2 , and NH4 + uptake and whole cell protein profile in different metabolic conditions were studied in the Het Fix mutant strain taking wild-type A. variabilis as reference. Het Fix mutant strain was incapable of assimilating elemental nitrogen (N2) due to its inability to form heterocysts and nitrogenase and this was the reason for its inability to grow in BG-110 medium (free from combined nitrogen). In contrast, wild-type strain grew reasonably well in the absence of combined nitrogen sources and also showed heterocyst differentiation (8.5%) and nitrogenase activity (10.8 ηmol C2H4 formed μg−1 Chl a h−1) in N2-medium. Wild-type strain also exhibited higher NR, NiR, and GS activities compared to its Het Fix mutant strain, which may presumably be due to acquisition of high uptake of NO3 , NO2 , and NH2 +. Wild-type strain in contrast to its Het Fix mutant strain also exhibited high level of G6PDH, IDH, and 14CO2 fixation activities. Low levels of G6PDH and IDH activities in Het Fix mutant strain further confirmed the lack of heterocyst differentiation and nitrogenase activity in the Het Fix mutant strain. NR, NiR, and GS activities in both the strains were energy-dependent and the energy required is mainly derived from photophosphorylation. Furthermore, it was found that de novo protein synthesis is necessarily required for the activities of NR, NiR, and GS in both wild-type and its Het Fix mutant strain. Received: 21 December 2001 / Accepted: 28 January 2002  相似文献   

7.
To study the post-uroporphyrin steps in heme and chlorophyll biosynthesis in Chlorobium, we attempted to clone the uroporphyrinogen decarboxylase ( hemE) gene. A Chlorobium genomic library was used to transform a restriction-minus Salmonella typhimurium strain. The recombinant DNA molecules were transduced into an auxotrophic Salmonella double mutant ( hemA(-) hemE(-)) by phage P22. Faster-growing colonies indicated complementation of the hemE mutation. Each clone was tested by backcross transduction of the mutant. Growth rates of the confirmed clones in LB medium were comparable to wild-type Salmonella. HPLC analysis of the substrate (uroporphyrinogen) and the product (coproporphyrinogen) of the decarboxylase activity was performed in one such clone. This clone showed an active hemE gene within a 4-kb insert.  相似文献   

8.
The joint effects of 0.5 M NaCl and light of different intensities on the activity of the photosynthetic apparatus and ATP content in cells of the katG mutant of cyanobacterium Synechocystis sp. PCC 6803 have been studied. The mutant demonstrated a higher photoinhibition rate and a slower rate of recovery compared with the wild type, as shown by measurements of the CO2-dependent O2 production and delayed fluorescence of Chl a. The presence of 0.5 M NaCl in the incubation medium caused equal photoinhibition of the photosynthetic apparatus at I = 1200 μE m−2 s−1 in the mutant and wild-type cells. At I = 2400 μE m−2 s−1, we observed stronger inhibition and slower recovery of the photosynthetic apparatus in the katG mutant than in wild-type cells. The data obtained evidence an important role of catalase-peroxidase in the system of reparation of the photosynthetic apparatus damaged by high-intensity light, especially at the background of NaCl stress.  相似文献   

9.
During tetrapyrrole biosynthesis 5-aminolevulinic acid dehydratase (ALAD) catalyzes the condensation of two molecules of 5-aminolevulinic acid (ALA) to form one molecule of the pyrrole derivative porphobilinogen. In Escherichia coli, the enzyme is encoded by the gene hemB. The hemB gene was cloned from Pseudomonas aeruginosa by functional complementation of an E. coli hemB mutant. An open reading frame of 1011 bp encoding a protein of 336 amino acids (Mr = 37 008) was identified. The gene was mapped to SpeI fragment G and DpnI fragment G of the P. aeruginosa chromosome, corresponding to the 10 to 12 min region of the new map or 19 to 22 min interval of the old map. The 5′ end of the hemB mRNA was determined and the −10 and −35 regions of a potential σ70-dependent promoter were localized. No obvious regulation of the hemB gene by oxygen, nitrate, heme or iron was detected. Alignment of the amino acid sequences deduced from hemB revealed a potential metal-binding site and indicated that the enzyme is Mg2+-dependent. P. aeruginosa hemB was overexpressed in an E. coli hemB mutant using the phage T7 RNA polymerase system and its Mg2+-dependent activity was directly demonstrated. Received: 11 July 1997 / Accepted: 9 October 1997  相似文献   

10.
Contamination of foods with pathogens such as Escherichia coli O157:H7 and Salmonella is a major concern worldwide and rapid, sensitive, and reliable methods are needed for detection of these organisms. Since these pathogens can contaminate similar foods and other types of samples, a multiplex polymerase chain reduction (PCR) was designed to allow simultaneous detection of both E. coli O157:H7 and Salmonella spp directly from enrichment cultures. Samples of apple cider, beef carcass wash water, ground beef, and bovine feces were inoculated with both E. coli O157:H7 and S. typhimurium at various bacterial levels. Following enrichment culturing for 20–24 h at 37°C in modified EC broth or buffered peptone water both containing novobiocin, the samples were subjected to a DNA extraction technique or to immunomagnetic separation then tested by the multiplex PCR assay. Four pairs of primers were employed in the PCR: primers for amplification of E. coli O157:H7 eaeA, stx 1/2 and plasmid sequences and for amplification of a portion of the Salmonella invA gene. Four fragments of the expected sizes were amplified in a single reaction and visualized following agarose gel electrophoresis in all the samples inoculated with ≤ 1 CFU g−1 or ml−1. Results can be obtained in approximately 30 h. The multiplex PCR is a potentially powerful technique for rapid and sensitive co-detection of both pathogens in foods and other types of samples. Received 28 December 1997/ Accepted in revised form 19 March 1998  相似文献   

11.
P-glycoprotein (P-gp), the product of human MDR1 gene, which functions as an ATP-dependent drug efflux pump, is N-linked glycosylated at asparagine residues 91, 94, and 99 located within the first extracellular loop. We report here the biochemical characterization of glycosylation-deficient (Gly) P-gp using a vaccinia virus based transient expression system. The staining of HeLa cells expressing Gly P-gp (91, 94, and 99N→Q), with P-gp specific monoclonal antibodies, MRK-16, UIC2 and 4E3 revealed a 40 to 50% lower cell-surface expression of mutant P-gp compared to the wild-type protein. The transport function of Gly P-gp, assessed using a variety of fluorescent compounds indicated that the substrate specificity of the pump was not affected by the lack of glycosylation. Additional mutants, Gly D (91, 94, 99N→D) and GlyΔ (91, 94, 99 N deleted) were generated to verify that the reduced cell surface expression, as well as total expression, were not a result of the glutamine substitutions. Gly D and GlyΔ Pgps were also expressed to the same level as the Gly mutant protein. 35S-Methionine/cysteine pulse-chase studies revealed a reduced incorporation of 35S-methionine/cysteine in full length Gly P-gp compared to wild-type protein, but the half-life (∼3 hr) of mutant P-gp was essentially unaltered. Since treatment with proteasome inhibitors (MG-132, lactacystin) increased only the intracellular level of nascent, mutant P-gp, the decreased incorporation of 35S-methionine/cysteine in Gly P-gp appears to be due to degradation of improperly folded mutant protein by the proteasome and endoplasmic reticulum-associated proteases. These results demonstrate that the unglycosylated protein, although expressed at lower levels at the cell surface, is functional and suitable for structural studies. Received: 28 July 1999/Revised: 20 October 1999  相似文献   

12.
The increased occurrence of Salmonella occurrence in local indigenous vegetables and poultry meat can be a potential health hazards. This study is aimed to detect the prevalence of twenty different virulence factors among Salmonella enterica strains isolated from poultry and local indigenous vegetables in Malaysia via an optimized, rapid and specific multiplex PCR assay. The assay encompasses a total of 19 Salmonella pathogenicity islands genes and a quorum sensing gene (sdiA) in three multiplex reaction sets. A total of 114 Salmonella enterica isolates belonging to 38 different serovars were tested. Each isolate in under this study was found to possess up to 70% of the virulence genes tested and exhibited variable pathogenicity gene patterns. Reproducibility of the multiplex PCR assay was found to be 100% and the detection limit of the optimized multiplex PCR was tested with lowest detectable concentration of DNA 0.8 pg μl−1. This study demonstrated various Salmonella pathogenicity island virulence gene patterns even within the same serovar. This sets of multiplex PCR system provide a fast and reliable typing approach based on Salmonella pathogenicity islands, thus enabling an effective monitoring of emerging pathogenic Salmonella strains as an additional tool in Salmonella surveillance studies.  相似文献   

13.
Scedosporium prolificans mutants lacking the ability to synthesize melanin were selected after ultraviolet light (UV) irradiation. UV exposure of S. prolificans conidia resulted in a high frequency of melanin-deficient (mel) mutants. Stable and non-stable morphological variants were found in the population: reversion of the mutant phenotype was always to the wild-type phenotype. Based on their morphological differences, these variants were classified into five different groups that were phenotypically characterized. The mel mutants plus the wild-type strain were examined for in vitro susceptibility to antifungal agents with different and/or the same mechanism of action. There was no apparent difference in minimum inhibitory concentrations when comparing the wild-type and the mel mutants. Therefore, melanin does not appear to confer protection against the more important antifungal agents in S. prolificans. Received: 30 April 2002 / Accepted: 10 July 2002  相似文献   

14.
In the wild type strain (stock no. 1227) of Thermoactinomyces vulgaris, as reported earlier [Sinha and Singh (1980) Biochem. J. 190, 457–460], all phosphatase isoenzymes (three alkaline — AlpI, AlpII and AlpIII, and one acidic — Acp) are present. However, the auxotrophic mutants, the strains 1286 (thi ), 1279 (nic , ura ) and 1278 (thi , ura ) exhibited two alkaline phosphatase isoenzymes (AlpII and AlpIII), but AlpI was lacking. In the strain 1261 (nic , thi ), only AlpIII was expressed, and AlpI and AlpII isoenzymes were missing. The results suggest that the strains, which require either thiamine (1286 and 1278) or nicotinamide (1279) for their growth, were AlpI mutants; and the strain (1261), which requires both thiamine and nicotinamide for its growth, was AlpI /AlpII double mutant. There was no direct correlation between uracil auxotrophy and the expression of phosphatases. The uniform expression of AlpIII and Acp in all the strains, irrespective of their nutrient requirements, suggest that these constitutive phosphatases are species-specific. The specific activities of the thermophilic acid and alkaline phosphatases were maximum in the wild type strain (1227) of T. vulgaris. The next in phosphatase activity was the strain 1279 (an AlpI mutant), followed by their decrease, in order, in the strains 1286 and 1278 (which were also AlpI mutants); while least activity of these enzymes was observed in the obligate thermophile strain 1261 (AlpI /AlpII double mutant).  相似文献   

15.
Summary Results of a study on H-relationships between the groupsSalmonella (a-z44),Arizona (1, ... −40) andE. coli (1–48) are given. By means of cross agglutination and cross absorption tests, strong relationships betweenSalmonella andArizona were demonstrated, while no H-antigen relationships could be observed betweenE. coli and the groupsSalmonella andArizona.  相似文献   

16.
Efficient utilization of pentose sugars (xylose and arabinose) is an essential requirement for economically viable ethanol production from cellulosic biomass. The desirable pentose-fermenting ethanologenic biocatalysts are the native microorganisms or the engineered derivatives without recruited exogenous gene(s). We have used a metabolic evolution (adaptive selection) approach to improve a non-transgenic homoethanol Escherichia coli SZ420 (ldhA pflB ackA frdBC pdhR::pflBp6-aceEF-lpd) for xylose fermentation. An improved mutant, E. coli KC01, was evolved through a 3 month metabolic evolution process. This evolved mutant increased pyruvate dehydrogenase activity by 100%, cell growth rate (h−1) by 23%, volumetric ethanol productivity by 65% and ethanol tolerance by 200%. These improvements enabled KC01 to complete 50 g xylose l−1 fermentations with an ethanol titer of 23 g l−1 and a yield of 90%. The improved cell growth and ethanol production of KC01 are likely attributed to its three fold increased ethanol tolerance.  相似文献   

17.
Marta Illyová 《Biologia》2006,61(5):531-539
The species composition, seasonal dynamic of biomass and density of zooplankton were studied in two arms with a different hydrological regime. The samples were collected in two hydrologically different years — extremely wet in 2002 and extremely dry in 2003. In the first arm the mean annual chlorophyll-a concentration was 31.6 μg L−1 (2002) and relatively high 64.7 μg L−1 during 2003. Mean seasonal zooplankton wet biomass was low and varied: 11.6 g m−3 (2002) and 2.93 g m−3 (2003). Total zooplankton density was high (7,370 N L−1) in 2002, when rotifers predominated in an open water zone and contributed up to 81% of the total zooplankton biomass and 83% of the total zooplankton density. In medial and littoral zone, in total, 22 cladoceran and 15 copepod species were identified. In the second arm the mean annual concentration of chlorophyll-a was high: 74.8 μg L−1 (2002) and 61.4 μg L−1 (2003). Mean seasonal zooplankton wet biomass varied from 92.5 g m−3 (2002) and 44.10 g m−3 (2003). In 2002 the planktonic crustaceans predominated; their mean biomass was 87.1 g m−3 and B. longirostris formed more than 91% of this value. In 2003, the zooplankton density was high (15,687 N L−1), when rotifers contributed up to 94% of this value. The boom of rotifers (58,740 N L−1) was recorded in June 2003. In total, 45 cladoceran and 14 copepod species were recorded in the medial and littoral zones. During observation we concluded that the structure of zooplankton, particularly species composition, abundance, biomass and seasonal dynamics are affected by the fluctuation of water levels in the arms of the rivers’ inundation areas. This unstable hydrological regime prevented the development of planktonic crustaceans.  相似文献   

18.
Development of a butanologenic strain with high selectivity for butanol production is often proposed as a possible route for improving the economics of biobutanol production by solventogenic Clostridium species. The acetoacetate decarboxylase (aadc) gene encoding acetoacetate decarboxylase (AADC), which catalyzes the decarboxylation of acetoacetate into acetone and CO2, was successfully disrupted by homologous recombination in solventogenic Clostridium beijerinckii NCIMB 8052 to generate an aadc mutant. Our fermentation studies revealed that this mutant produces a maximum acetone concentration of 3 g/L (in P2 medium), a value comparable to that produced by wild-type C. beijerinckii 8052. Therefore, we postulated that AADC-catalyzed decarboxylation of acetoacetate is not the sole means for acetone generation. Our subsequent finding that non-enzymatic decarboxylation of acetoacetate in vitro, under conditions similar to in vivo acetone–butanol–ethanol (ABE) fermentation, produces 1.3 to 5.2 g/L acetone between pH 6.5 and 4 helps rationalize why various knock-out and knock-down strategies designed to disrupt aadc in solventogenic Clostridium species did not eliminate acetone production during ABE fermentation. Based on these results, we discuss alternatives to enhance selectivity for butanol production.  相似文献   

19.
A recA mutant was constructed of a soil isolate of Burkholderia cepacia, strain ATCC 17616. Prior to mutagenesis, the recA gene was cloned from this strain by its ability to complement the methyl methanesulfonate sensitivity of an Escherichia coli recA mutant. Sequence analysis of the strain showed high sequence similarity (94% nucleic acid and 99% amino acid identity) with the recA gene previously cloned from a clinical isolate of B. cepacia, strain JN25. The subcloned recA gene from B. cepacia ATCC 17616 restored UV resistance and recombination proficiency to recA mutants of E. coli and Pseudomonas aeruginosa, as well as restoring the ability of D3 prophages to be induced to lytic growth from a RecA strain of P. aeruginosa. The recA mutant of B. cepacia ATCC 17616 was constructed by λ-mediated Tn5 mutagenesis of the cloned recA gene in E. coli, followed by replacement of the Tn5-interrupted gene for the wild-type allele in the chromosome of B. cepacia by marker exchange. The RecA phenotype of the mutant was demonstrated by the loss of UV resistance as compared to the parental strain. Southern hybridization analysis of chromosomal DNA from the mutant indicated the presence of Tn5 in the recA gene, and the location of the Tn5 insertion in the recA allele was identified by nucleotide sequence analysis. A test using the recA mutant to see if acquired resistance to d-serine toxicity in B. cepacia might be a result of RecA-mediated activities proved negative; nevertheless, RecA activity potentially contributes to the overall genomic plasticity of B. cepacia and a recA mutant will be useful in bioengineering of this species. Received: 24 January / Received revision: 11 July 1997 / Accepted: 25 August 1997  相似文献   

20.
Burhenne N  Tischner R 《Planta》2000,211(3):440-445
 A method is presented to isolate mutants of Chlorella sorokiniana with defects in NO3 metabolism. Three nitrite-reductase (NIR; E.C.1.7.7.1)-deficient mutants were obtained from 500 pinpoint-colony-forming clones. The final screening was performed using NO3 , NO2 or NH+ 4 as N-source. The mutants isolated absorb NO3 with rates close to those measured for the wild type and they excrete NO2 into the medium. The ratio between NO3 uptake and NO2 excretion was 1:1. The sensitivity of NO3 uptake to NH+ 4 was reduced in the mutant strains as it was in the N-starved wild type of Chlorella. Nitrate reductase (NR; EC 1.6.6.1) expression and NR activity were slightly reduced compared to the wild type due to feedback regulation in the mutant strains. No NIR protein was found in the three mutants. However, NIR activity was obtained (50% of the wild-type) for one mutant strain. The NIR-deficient mutants and the already available NR-deficient mutants will be promising tools for investigations of the nitrate assimilation pathway on the molecular level and for studies searching for signaling of C and N metabolism by inorganic N-compounds. Received: 8 October 1999 / Accepted: 25 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号