首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetes mellitus-associated ischemic heart disease is a major public burden in industrialized countries. Reperfusion to a previously ischemic myocardium is obligatory to reinstate its function prior to irreversible damage. However, reperfusion is considered ‘a double-edged sword’ as reperfusion per se could augment myocardial ischemic damage, known as myocardial ischemia-reperfusion (I/R) injury. The brief and repeated cycles of I/R given before a sustained ischemia and reperfusion are represented as ischemic preconditioning, which protects the heart from lethal I/R injury. Few studies have demonstrated preconditioning-mediated cardioprotection in the diabetic heart. In contrast, considerable number of studies suggests that myocardial defensive effects of preconditioning are abolished in the presence of chronic diabetes mellitus that raised questions over preconditioning effects in the diabetic heart. It is evidenced that chronic diabetes mellitus-associated deficit in survival pathways, impaired function of mito-KATP channels, MPTP opening and high oxidative stress play key roles in paradoxically suppressed cardioprotective effects of preconditioning in the diabetic heart. These controversial results open up a new area of research to identify potential mechanisms influencing disparities on preconditioning effects in diabetic hearts. In this review, we discussed first the discrepancies on the modulatory role of diabetes mellitus in I/R-induced myocardial injury. Following this, we addressed whether preconditioning could protect the diabetic heart against I/R-induced myocardial injury. Moreover, potential mechanisms pertaining to the attenuated cardioprotective effects of preconditioning in the diabetic heart have been delineated. These are important to be understood for better exploitation of preconditioning strategies in limiting I/R-induced myocardial injury in the diabetic heart.  相似文献   

2.
In this study, we investigated the effects of isorhamnetin on myocardial ischaemia reperfusion (I/R) injury in Langendorff-perfused rat hearts. Isorhamnetin treatment (5, 10 and 20 μg/mL) significantly alleviated cardiac morphological injury, reduced myocardial infarct size, decreased the levels of marker enzymes (LDH and CK) and improved the haemodynamic parameters, reflected by the elevated levels of the left ventricular developed pressure (LVDP), coronary flow (CF) and the maximum up/down velocity of left ventricular pressure (+dp/dtmax). Moreover, isorhamnetin reperfusion inhibited apoptosis of cardiomyocytes in the rats subjected to cardiac I/R in a dose-dependent manner concomitant with decreased protein expression of Bax and cleaved-caspase-3, as well as increased protein expression of Bcl-2. In addition, I/R-induced oxidative stress was manifestly mitigated by isorhamnetin treatment, as showed by the decreased malondialdehyde (MDA) level and increased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). These results indicated that isorhamnetin exerts a protective effect against I/R-induced myocardial injury through the attenuation of apoptosis and oxidative stress.  相似文献   

3.
白藜芦醇甙对大鼠心脏缺血/再灌注损伤的保护作用   总被引:1,自引:0,他引:1  
Zhang LP  Yang CY  Wang YP  Cui F  Zhang Y 《生理学报》2008,60(2):161-168
本文利用冠脉结扎/放松方法和Langendorff灌注技术,建立在体和离体大鼠心脏缺血/再灌注(ischemia/reperfusion,I/R)损伤模型,探讨白藜芦醇甙(polydatin)对大鼠I/R心肌损伤的保护作用及其机制.观察白藜芦醇甙对缺血和再灌注心律失常、心肌梗死面积、心脏收缩功能、心肌超氧化物歧化酶(superoxide dismutase,SOD)活性、丙二醛(malondialdehyde,MDA)含量、NO含量以及一氧化氮合酶(nitric oxide synthase,NOS)活性的影响.结果显示:与对照组相比,白藜芦醇甙组大鼠缺血和再灌注心律失常明显降低(P<0.05,P<0.01);心肌梗死面积显著减少(P相似文献   

4.
This study was designed to investigate whether Resveratrol (Res) could be a prophylactic factor in the prevention of I/R injury and to shed light on its underlying mechanism. Primary culture of neonatal rat cardiomyocytes were randomly distributed into three groups: the normal group (cultured cardiomyocytes were in normal conditions), the I/R group (cultured cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion), and the Res+I/R group (100 µmol/L Res was administered before cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion). To test the extent of cardiomyocyte injury, several indices were detected including cell viability, LDH activity, Na+-K+-ATPase and Ca2+-ATPase activity. To test apoptotic cell death, caspase-3 activity and the expression of Bcl-2/Bax were detected. To explore the underlying mechanism, several inhibitors, intracellular calcium, SOD activity and MDA content were used to identify some key molecules involved. Res increased cell viability, Na+-K+-ATPase and Ca2+-ATPase activity, Bcl-2 expression, and SOD level. While LDH activity, capase-3 activity, Bax expression, intracellular calcium and MDA content were decreased by Res. And the effect of Res was blocked completely by either L-NAME (an eNOS inhibitor) or MB (a cGMP inhibitor), and partly by either DS (a PKC inhibitor) or Glybenclamide (a KATP inhibitor). Our results suggest that Res attenuates I/R injury in cardiomyocytes by preventing cell apoptosis, decreasing LDH release and increasing ATPase activity. NO, cGMP, PKC and KATP may play an important role in the protective role of Res. Moreover, Res enhances the capacity of anti-oxygen free radical and alleviates intracellular calcium overload in cardiomyocytes.  相似文献   

5.
The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress.  相似文献   

6.
Free radicals, calcium overloading and loss of membrane phospholipids play an important role in the development of ischemia/reperfusion (I/R) injury. Melatonin is a well-known antioxidant and free radical scavenger. Melatonin may also reduce the intracellular calcium overloading and inhibit lipid peroxidation. This study was designed to investigate the effects of melatonin on the I/R-induced cardiac infarct size in an in vivo rat model. We also investigated glutathione (GSH) levels, an antioxidant the levels of which are influenced by oxidative stress, and malondialdehyde (MDA) levels, which is an index of lipid peroxidation. To produce cardiac damage, the left main coronary artery was occluded for 30 min, followed by 120 min reperfusion, in anesthetized rats. Melatonin (10 mg/kg) or vehicle was given 10 min before ischemia via the jugular vein. Infarct size, expressed as the percentage of the risk zone, was found significantly greater in I/R group than in the melatonin-treated I/R group. MDA levels were significantly higher, but GSH levels were lower in the I/R group than in the control group. Melatonin significantly reduced the MDA values and increased the GSH levels. These results suggest that oxidative stress contributes to myocardial I/R injury and melatonin administration exerts a mitigating effect on infarct size. Furthermore, the results indicated that melatonin improves the antioxidant capacity of the heart and attenuates the degree of lipid peroxidation after I/R.  相似文献   

7.
Reactive oxygen species (ROS) are important intracellular signaling molecules and are implicated in cardioprotective pathways including ischemic preconditioning. Statins have been shown to have cardioprotective effects against ischemia/reperfusion injury, however, the precise mechanisms remain to be elucidated. We hypothesized that ROS-mediated signaling cascade may be involved in pravastatin-induced cardioprotection. Cultured rat cardiomyocytes were exposed to H2O2 for 30 min to induce cell injury. Pravastatin significantly suppressed H2O2-induced cell death evaluated by propidium iodide staining and the MTT assay. Incubation with pravastatin activated catalase, and prevented a ROS burst induced by H2O2, which preserved mitochondrial membrane potential. Protective effects were induced very rapidly within 10 min, which was concordant with the up-regulation of phosphorylated ERK1/2. L-NAME, 5HD, N-acetylcysteine (NAC) and staurosporine inhibited ERK1/2 phosphorylation and also reduced pravastatin-induced cardioprotection, suggesting NO, mitochondrial KATP (mitoKATP) channels, ROS and PKC should be involved in the cardioprotective signaling. We also demonstrated that pravastatin moderately up-regulated ROS generation in a 5HD-inhibitable manner. In isolated perfused rat heart experiments, pravastatin administered 10 min prior to no-flow global ischemia significantly improved left ventricular functional recovery, and also reduced infarct size, which were attenuated by the treatment with NAC, 5HD, L-NAME or staurosporine. Administration of pravastatin from the beginning of reperfusion also conferred cardioprotection. Pravastatin protected the cardiomyocytes against oxidative stress by preventing the ROS burst and preserving mitochondrial function. Moderately up-regulated ROS production by mitoKATP channels opening is involved in the pro-survival signaling cascade activated by pravastatin.  相似文献   

8.
目的:观察楤木皂苷(total saponins extracted from Aralia taibaiensis,s AT)对大鼠心肌缺血/再灌注(myocardia1 ischemia/reperfusion,MI/R)损伤的影响。方法:可逆性冠脉左前降支结扎缺血30 min再灌注3 h复制MI/R模型,将SD大鼠随机分为假手术组、模型组、s AT低、中、高剂量组,每组10只。采用伊文思蓝(EB)、2,3,5-氯化三苯基四氮唑蓝(TTC)双染法测定心肌梗死面积,苏木精-伊红(HE)染色法观察心肌病理学形态变化,并检测血清中乳酸脱氢酶(LDH)、肌酸激酶同工酶(CK-MB)、超氧化物歧化酶(SOD)、丙二醛(MDA)、过氧化氢酶(CAT)及谷胱甘肽过氧化物酶(GSH-Px)水平。结果:与模型组比较,s AT中、高剂量组可明显缩小心肌梗死面积(P0.05),并显著降低血清中LDH、CK-MB及MDA的含量,同时使得血清中SOD、CAT和GSH-Px的活性增加。且所有给药组心肌组织的病理损伤也小于模型组。结论:s AT对大鼠MI/R损伤具有保护作用,其机制可能与抗氧化作用相关。  相似文献   

9.
Ischemic heart disease is a leading cause of death worldwide. Myocardial ischemia results in reduced coronary flow, followed by diminished oxygen and nutrient supply to the heart. Reperfusion to an ischemic myocardium often augments the ischemic damage, known as ischemia-reperfusion (I/R) injury. Number of studies demonstrated that the hyperlipidemic myocardium is rather sensitive and more vulnerable to I/R-induced myocardial injury. Repeated brief ischemia and reperfusion cycles, termed as ischemic preconditioning, given before a sustained ischemia is known to reduce myocardial damage occur as a result of I/R. A plethora of evidence supports the fact that preconditioning is one of the promising interventional strategies having an ability to limit I/R-induced myocardial injury. Despite this fact, the preconditioning-mediated cardioprotection is blunted in chronic hyperlipidemic condition. This suggests that preconditioning is moderately a ‘healthy heart protective phenomenon’. The mechanisms by which chronic hyperlipidemia abrogates cardioprotective effects of preconditioning are uncertain and are not completely understood. The impaired opening of mitochondrial-KATP channels, eNOS uncoupling and excessive generation of superoxides in the hyperlipidemic myocardium could play a role in attenuating preconditioning-mediated myocardial protection against I/R injury. Moreover, hyperlipidemia-induced loss of cardioprotective effect of preconditioning is associated with redistribution of both sarcolemmal and mitochondrial Connexin 43. We addressed, in this review, the potential mechanisms involved in hyperlipidemia-induced impairment of myocardial preconditioning. Additionally, novel pharmacologic interventions to attenuate hyperlipidemia-associated exaggerated I/R-induced myocardial injury have been discussed.  相似文献   

10.
Acute myocardial infarction (AMI) is the maximum critical cardiovascular event and causes high morbidity and mortality worldwide. The ischemia and reperfusion that occur in AMI cause apoptosis and cellular dysfunction in cardiomyocytes. IL-20, an IL-10 family member, is involved in various inflammatory diseases. Therefore, we sought to elucidate the role of IL-20 in the infarcted heart following ischemia/reperfusion (I/R) injury. We found that IL-20 and its receptors, IL-20R1 and IL-20R2, were increased in H2C2 cardiomyoblast cells and ventricular tissues subjected to hypoxia/reoxygenation (H/R) stimulation. The presence of IL-20 further inhibited the cell viability of H9C2 cells and primary cardiomyocytes. Our results suggested that IL-20 elicited an increase in Ca2+ and activation of the PKC/NADPH oxidase pathway, leading to the elevation of oxidase stress and downregulation of AKT. Furthermore, we demonstrated that IL-20 was able to mediate H/R-induced apoptosis via PKC/NADPH oxidase/AKT signaling. Our findings implied that IL-20 was responsive to H/R stress in vitro and in rat hearts undergoing I/R injury, and this upregulation of IL-20 may contribute to the apoptosis of cardiomyocytes.  相似文献   

11.
Exercise training offers cardioprotection against ischemia and reperfusion (I/R) injury. However, few essential signals have been identified to underscore the protection from injury. In the present study, we hypothesized that exercise-induced acceleration of myocardial tissue oxygenation recovery contributes to this protection. C57BL/6 mice (4 weeks old) were trained on treadmills for 45 min/day at a treading rate of 15 m/min for 8 weeks. At the end of 8-week exercise training, mice underwent 30-min left anterior descending coronary artery occlusion followed by 60-min or 24-h reperfusion. Electron paramagnetic resonance oximetry was performed to measure myocardial tissue oxygenation. Western immunoblotting analyses, gene transfection, and myography were examined. The oximetry study demonstrated that exercise markedly shortened myocardial tissue oxygenation recovery time following reperfusion. Exercise training up-regulated Kir6.1 protein expression (a subunit of ATP-sensitive K+ channel on vascular smooth muscle cells, VSMC sarc-KATP) and protected the heart from I/R injury. In vivo gene transfer of dominant negative Kir6.1AAA prolonged the recovery time and enlarged infarct size. In addition, transfection of Kir6.1AAA increased the stiffness and reduced the relaxation capacity in the vasculature. Together, our study demonstrated that exercise training up-regulated Kir6.1, improved tissue oxygenation recovery, and protected the heart against I/R injury. This exercise-induced cardioprotective mechanism may provide a potential therapeutic intervention targeting VSMC sarc-KATP channels and reperfusion recovery.  相似文献   

12.
13.
14.
Alleviating the oxidant stress associated with myocardial ischaemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischaemia reperfusion (I/R)-induced cardiac damage. It is reported that EGFR/erbB2 signalling is an important cardiac survival pathway in cardiac function and activation of EGFR has a cardiovascular effect in global ischaemia. Epidermal growth factor (EGF), a typical EGFR ligand, was considered to have a significant role in activating EGFR. However, no evidence has been published whether exogenous EGF has protective effects on myocardial ischaemia reperfusion. This study aims to investigate the effects of EGF in I/R-induced heart injury and to demonstrate its mechanisms. H9c2 cells challenged with H2O2 were used for in vitro biological activity and mechanistic studies. The malondialdehyde (MDA) and Superoxide Dismutase (SOD) levels in H9c2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse administrated with or without EGF were used for in vivo studies. Pretreatment of H9c2 cells with EGF activated Nrf2 signalling pathway, attenuated H2O2-increased MDA and H2O2-reduced SOD level, followed by the inhibition of H2O2-induced cell death. In in vivo animal models of myocardial I/R, administration of EGF reduced infarct size and myocardial apoptosis. These data support that EGF decreases oxidative stress and attenuates myocardial ischaemia reperfusion injury via activating Nrf2.  相似文献   

15.
Extensive research focused on finding effective strategies to prevent or improve recovery from myocardial ischaemia/reperfusion (I/R) injury. Basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some heart disorders, including ischaemic injury. In this study, we demonstrate that bFGF administration can inhibit the endoplasmic reticulum (ER) stress and mitochondrial dysfunction induced in the heart in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response and mitochondrial dysfunction proteins that are induced by tert‐Butyl hydroperoxide (TBHP) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signalling pathways, PI3K/Akt and ERK1/2. Inhibition of these PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and PD98059, partially reduces the protective effect of bFGF. Taken together, our results indicate that the cardioprotective role of bFGF involves the suppression of ER stress and mitochondrial dysfunction in ischaemic oxidative damage models and oxidative stress‐induced H9C2 cell injury; furthermore, these effects underlie the activation of the PI3K/Akt and ERK1/2 signalling pathways.  相似文献   

16.
Danshen-Gegen (DG) decoction, an herbal formulation comprising Radix Salvia Miltiorrhiza and Radix Puerariae Lobatae, is prescribed for the treatment of coronary heart disease in Chinese medicine. Experimental and clinical studies have demonstrated that DG decoction can reduce the extent of atherosclerosis. In the present study, using an ex vivo rat model of myocardial ischemia/reperfusion (I/R) injury, we investigated the myocardial preconditioning effect of an aqueous DG extract prepared from an optimized weight-to-weight ratio of Danshen and Gegen. Short-term treatment with DG extract at a daily dose of 1 g/kg and 2 g/kg for 3 days protected against myocardial I/R injury in rats. The cardioprotection afforded by DG pretreatment was paralleled by enhancements in mitochondrial antioxidant status and membrane structural integrity, as well as a decrease in the sensitivity of mitochondria to Ca2+-stimulated permeability transition in vitro, particularly under I/R conditions. Short-term treatment with the DG extract also enhanced the translocation of PKC? from the cytosol to mitochondria in rat myocardium, and this translocation was inhibited by α-tocopherol co-treatment with DG extract in rats. Short-term DG treatment may precondition the myocardium via a redox-sensitive PKC?/mKATP pathway, with resultant inhibition of the mitochondrial permeability transition through the opening of mitochondrial KATP channels. Our results suggest that clinical studies examining the effectiveness of DG extract given prophylactically in affording protection against myocardial I/R injury would be warranted.  相似文献   

17.
18.
19.
20.
目的:蛋白激酶C(PKC)活化对L-6TG大鼠肌母细胞缺血/再灌注损伤过程中细胞凋亡的影响.方法:将培养的L-6TG大鼠肌母细胞随机分为3组:①正常对照组(C组);②缺血/再灌注组(I/R组);③PMA 缺血/再灌注组(PMA组).观测了细胞内SOD、XOD、Ca2 含量的变化;采用MTT法检测线粒体的功能;利用流式细胞仪和细胞DNA电泳结果检测细胞凋亡情况;采用免疫组织化学的方法检测caspase-3的蛋白表达情况,结合自动图像分析系统对其结果进行定量分析.结果:蛋白激酶C活化可显著降低L-6TG大鼠肌母细胞I/R 4 h后细胞内XOD、Ca2 含量及凋亡细胞百分率,增加细胞内SOD活性及线粒体呼吸功能,DNA电泳无梯状条带出现,caspase-3的表达明显下调.结论:蛋白激酶C活化可明显减轻L-6TG大鼠肌母细胞缺血再灌注损伤后的细胞凋亡的发生,其机制可能与减轻氧化损伤、调节细胞内钙稳态、减轻线粒体损伤、减少caspase-3表达有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号