首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PH domain-mediated membrane targeting of Asef   总被引:1,自引:0,他引:1  
The APC-associated guanine nucleotide exchange factor (GEF) Asef regulates cell morphology and migration. Asef contains a pleckstrin homology (PH) domain in addition to Dbl homology (DH), APC-binding (ABR), and Src homology 3 (SH3) domains. Here we show that the PH domain of Asef binds to phosphatidylinositol 3,4,5-trisphophate [PtdIns(3,4,5)P3] and targets Asef to the cell-cell adhesion sites in MDCK II cells. Furthermore, we demonstrate that overexpression of Asef in MDCK II cells results in increases in the amounts of E-cadherin and the actin filaments at the sites of cell-cell contact. These results suggest that Asef is targeted via its PH domain to the cell-cell adhesion sites and is involved in the regulation of cell adhesion.  相似文献   

2.
The Rac-specific guanine nucleotide exchange factor (GEF) Asef is activated by binding to the tumor suppressor adenomatous polyposis coli mutant, which is found in sporadic and familial colorectal tumors. This activated Asef is involved in the migration of colorectal tumor cells. The GEFs for Rho family GTPases contain the Dbl homology (DH) domain and the pleckstrin homology (PH) domain. When Asef is in the resting state, the GEF activity of the DH-PH module is intramolecularly inhibited by an unidentified mechanism. Asef has a Src homology 3 (SH3) domain in addition to the DH-PH module. In the present study, the three-dimensional structure of Asef was solved in its autoinhibited state. The crystal structure revealed that the SH3 domain binds intramolecularly to the DH domain, thus blocking the Rac-binding site. Furthermore, the RT-loop and the C-terminal region of the SH3 domain interact with the DH domain in a manner completely different from those for the canonical binding to a polyproline-peptide motif. These results demonstrate that the blocking of the Rac-binding site by the SH3 domain is essential for Asef autoinhibition. This may be a common mechanism in other proteins that possess an SH3 domain adjacent to a DH-PH module.  相似文献   

3.
Asef is a member of the Dbl-family of guanine nucleotide exchange factors (GEFs) with a proposed specificity for the small GTPase Rac1. Here we investigated the specificity and regulation of Asef by measuring its GEF activity in vitro and observed hardly any activity towards Rac1, Rac2 and Rac3, or RhoA and TC10. In contrast, various purified Asef protein fragments catalyzed the nucleotide exchange reaction of Cdc42. The Cdc42GEF activity of the Dbl homology (DH) domain of Asef was significantly higher in the presence of the pleckstrin homology (PH) domain. Our data strongly suggest that Asef is a canonical Cdc42GEF, which employs its PH domain to efficiently stabilize its autoinhibited state, but also to facilitate nucleotide exchange activity of the DH domain after its activation by upstream signals.  相似文献   

4.
The tumour suppressor adenomatous polyposis coli (APC) is mutated in sporadic and familial colorectal tumours. APC binds to beta-catenin, a key component of the Wnt signalling pathway, and induces its degradation. APC interacts with microtubules and accumulates at their plus ends in membrane protrusions, and associates with the plasma membrane in an actin-dependent manner. In addition, APC interacts with the Rac-specific guanine nucleotide exchange factor Asef and stimulates its activity, thereby regulating the actin cytoskeletal network and cell morphology. Here we show that overexpression of Asef decreases E-cadherin-mediated cell-cell adhesion and promotes the migration of epithelial Madin-Darby canine kidney cells. Both of these activities are stimulated by truncated APC proteins expressed in colorectal tumour cells. Experiments based on RNA interference and dominant-negative mutants show that both Asef and mutated APC are required for the migration of colorectal tumour cells expressing truncated APC. These results suggest that the APC-Asef complex functions in cell migration as well as in E-cadherin-mediated cell-cell adhesion, and that truncated APC present in colorectal tumour cells contributes to their aberrant migratory properties.  相似文献   

5.
Mutations of the tumor suppressor adenomatous polyposis coli (APC) are responsible for sporadic and familial colorectal tumors. APC negatively regulates Wnt signaling by inducing β-catenin degradation. It has also been shown that APC plays a role in the organization of cytoskeletal networks. APC interacts with Asef and Asef2, Rac1- and Cdc42-specific guanine nucleotide exchange factors (GEFs), and stimulates their GEF activity; thereby regulating cell morphology, adhesion, and migration. Truncated mutant APCs present in colorectal tumor cells activate Asef and Asef2 constitutively and contribute to their aberrant migratory properties. We show here that hepatocyte growth factor (HGF), as well as basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), induce the accumulation and colocalization of APC and Asef in membrane ruffles and lamellipodia of epithelial cells. Both APC and Asef were found to be required for HGF-induced cell migration. Furthermore, we show that the effects of HGF, bFGF, and EGF on APC and Asef are mediated by the activation of phosphatidylinositol 3-kinase (PI3-kinase) and require the PH domain of Asef. These results suggest that Asef and APC function downstream of HGF and PI3-kinase, and play critical roles in growth factor-mediated regulation of cell morphology and migration.Mutations of the tumor suppressor gene adenomatous polyposis coli (APC)2 are responsible for familial adenomatous polyposis (FAP), a dominantly inherited disease characterized by multiple adenomatous polyps in the colon (1, 2). The APC gene is also somatically mutated in the majority of sporadic colorectal tumors. The majority of the somatic mutations in APC is confined to its central region and result in the generation of truncated gene products. It is well known that APC induces degradation of β-catenin, a key Wnt signaling effector (36). Furthermore, it has recently been shown that APC also interacts with various other cellular proteins, including Asef, Asef2, IQGAP1, and kinesin-2, and regulates the organization of cytoskeletal networks, thereby controlling cell adhesion and motility (715).Asef is a guanine-nucleotide exchange factor (GEF) specific for Rac1 and Cdc42 (911, 15, 16). APC interacts via its armadillo repeat domain with an APC-binding region (ABR) in the NH2 terminus of Asef. In addition to this ABR, Asef contains Dbl homology (DH), Pleckstrin homology (PH), and Src homology 3 (SH3) domains. The SH3 domain of Asef inhibits its own GEF activity by intramolecular binding to the DH domain (17, 18). The PH domain of Asef binds to phosphatidylinositol 3,4,5-trisphosphate (PIP3) and is required for its localization to the plasma membrane (19). APC enhances the GEF activity of Asef, presumably by relieving the intramolecular negative regulation and thereby regulates cell morphology, adhesion, and migration. A mutant form of Asef lacking the ABR shows strong GEF activity even in the absence of APC. Furthermore, truncated mutant APCs present in colorectal tumor cells activate Asef constitutively and cause increased aberrant migration. APC also activates Asef2, which has significant structural and functional similarities to Asef (11, 15). Thus, truncated mutant APCs, Asef and Asef2 may be important for adenoma formation as well as tumor progression to invasive malignancy.HGF is known to be important for embryonic development, wound healing, tissue regeneration, hematopoiesis, and tissue homeostasis (20, 21). The HGF receptor, which is encoded by the proto-oncogene c-met, is a tyrosine kinase, and its activation by HGF induces cell motility, invasion, and proliferation. Furthermore, HGF signaling is known to play a crucial role in tumor development and malignant progression, in particular by increasing tumor invasiveness and metastatic potential. Because the effects of APC-activated Asef on MDCK cells appear to be similar to those of HGF, we attempted to examine whether APC and Asef function downstream of HGF. In the present study, we show that APC and Asef indeed function downstream of HGF and that Asef is required for HGF-induced migration.  相似文献   

6.
Asef (herein called Asef1) was identified as a Rac1-specific exchange factor stimulated by adenomatous polyposis coli (APC), contributing to colorectal cancer cell metastasis. We investigated Asef2, an Asef1 homologue having a similar N-terminal APC binding region (ABR) and Src-homology 3 (SH3) domain. Contrary to previous reports, we found that Asef1 and Asef2 exchange activity is Cdc42 specific. Moreover, the ABR of Asef2 did not function independently but acted in tandem with the SH3 domain to bind APC. The ABRSH3 also bound the C-terminal tail of Asef2, allowing it to function as an autoinhibitory module within the protein. Deletion of the C-terminal tail did not constitutively activate Asef2 as predicted; rather, a conserved C-terminal segment was required for augmented Cdc42 GDP/GTP exchange. Thus, Asef2 activation involves APC releasing the ABRSH3 from the C-terminal tail, resulting in Cdc42 exchange. These results highlight a novel exchange factor regulatory mechanism and establish Asef1 and Asef2 as Cdc42 exchange factors, providing a more appropriate context for understanding the contribution of APC in establishing cell polarity and migration.  相似文献   

7.
The tumor suppressor adenomatous polyposis coli (APC) is mutated in sporadic and familial colorectal tumors. APC stimulates the activity of the Cdc42- and Rac1-specific guanine nucleotide exchange factor Asef and promotes the migration and invasion of colorectal tumor cells. Furthermore, Asef is overexpressed in colorectal tumors and is required for colorectal tumorigenesis. It is also known that NOTCH signaling plays critical roles in colorectal tumorigenesis and fate determination of intestinal progenitor cells. Here we show that NOTCH3 up-regulates Asef expression by activating the Asef promoter in colorectal tumor cells. Moreover, we demonstrate that microRNA-1 (miR-1) is down-regulated in colorectal tumors and that miR-1 has the potential to suppress NOTCH3 expression through direct binding to its 3’-UTR region. These results suggest that the miR-1-NOTCH3-Asef pathway is important for colorectal tumor cell migration and may be a promising molecular target for the treatment of colorectal tumors.  相似文献   

8.
Mutation of the tumor suppressor adenomatous polyposis coli (APC) is a key early event in the development of most colorectal tumors. APC promotes degradation of β-catenin and thereby negatively regulates Wnt signaling, whereas mutated APCs present in colorectal tumor cells are defective in this activity. APC also stimulates the activity of the guanine nucleotide exchange factor Asef and regulates cell morphology and migration. Truncated mutant APCs constitutively activate Asef and induce aberrant migration of colorectal tumor cells. Furthermore, we have recently found that Asef and APC function downstream of hepatocyte growth factor and phosphatidylinositol 3-kinase. We show here that Asef is required for basic fibroblast growth factor- and vascular endothelial growth factor-induced endothelial cell migration. We further demonstrate that Asef is required for basic fibroblast growth factor- and vascular endothelial growth factor-induced microvessel formation. Furthermore, we show that the growth as well as vascularity of subcutaneously implanted tumors are markedly impaired in Asef−/− mice compared with wild-type mice. Thus, Asef plays a critical role in tumor angiogenesis and may be a promising target for cancer chemotherapy.  相似文献   

9.
Cell migration is fundamental to a variety of physiological processes, including tissue development, homeostasis, and regeneration. Migration has been extensively studied with cells on 2-dimensional (2D) substrates, but much less is known about cell migration in 3D environments. Tissues and organs are 3D, which is the native environment of cells in vivo, pointing to a need to understand migration and the mechanisms that regulate it in 3D environments. To investigate cell migration in 3D environments, we developed microfluidic devices that afford a controlled, reproducible platform for generating 3D matrices. Using these devices, we show that the Rho family guanine nucleotide exchange factor (GEF) Asef2 inhibits cell migration in 3D type I collagen (collagen I) matrices. Treatment of cells with the myosin II (MyoII) inhibitor blebbistatin abolished the decrease in migration by Asef2. Moreover, Asef2 enhanced MyoII activity as shown by increased phosphorylation of serine 19 (S19). Furthermore, Asef2 increased activation of Rac, which is a Rho family small GTPase, in 3D collagen I matrices. Inhibition of Rac activity by treatment with the Rac-specific inhibitor NSC23766 abrogated the Asef2-promoted increase in S19 MyoII phosphorylation. Thus, our results indicate that Asef2 regulates cell migration in 3D collagen I matrices through a Rac-MyoII-dependent mechanism.  相似文献   

10.
Intersectin-1L is a member of the Dbl homology (DH) domain guanine nucleotide exchange factors (GEF) which control Rho-family GTPase signaling. Intersectin-1L is a GEF that is specific for Cdc42. It plays an important role in endocytosis, and is regulated by several partners including the actin regulator N-WASP. Intact intersectin-1L shows low Cdc42 exchange activity, although the isolated catalytic DH domain shows high activity. This finding suggests that the molecule is autoinhibited. To investigate the mechanism of autoinhibition we have constructed a series of domain deletions. We find that the five SH3 domains of intersectin are important for autoinhibition, with the fifth domain (SH3(E)) being sufficient for the bulk of the autoinhibitory effect. This SH3 domain appears to primarily interact with the DH domain. We have determined the crystal structure of the SH3(E)-DH domain construct, which shows a domain swapped arrangement in which the SH3 from one monomer interacts with the DH domain of the other monomer. Analytical ultracentrifugation and gel filtration, however, show that under biochemical concentrations, the construct is fully monomeric. Thus we propose that the actual autoinhibited structure contains the related intramolecular SH3(E)-DH interaction. We propose a model in which this intramolecular interaction may block or distort the GTPase binding region of the DH domain.  相似文献   

11.
RH-RhoGEFs are a family of guanine nucleotide exchange factors that contain a regulator of G protein signaling homology (RH) domain. The heterotrimeric G protein Gα(13) stimulates the guanine nucleotide exchange factor (GEF) activity of RH-RhoGEFs, leading to activation of RhoA. The mechanism by which Gα(13) stimulates the GEF activity of RH-RhoGEFs, such as p115RhoGEF, has not yet been fully elucidated. Here, specific residues in Gα(13) that mediate activation of p115RhoGEF are identified. Mutation of these residues significantly impairs binding of Gα(13) to p115RhoGEF as well as stimulation of GEF activity. These data suggest that the exchange activity of p115RhoGEF is stimulated allosterically by Gα(13) and not through its interaction with a secondary binding site. A crystal structure of Gα(13) bound to the RH domain of p115RhoGEF is also presented, which differs from a previously crystallized complex with a Gα(13)-Gα(i1) chimera. Taken together, these data provide new insight into the mechanism by which p115RhoGEF is activated by Gα(13).  相似文献   

12.
The Rac-specific GEF (guanine-nucleotide exchange factor) Tiam1 (T-lymphoma invasion and metastasis 1) regulates migration, cell-matrix and cell-cell adhesion by modulating the actin cytoskeleton through the GTPase, Rac1. Using yeast two-hybrid screening and biochemical assays, we found that Tiam1 interacts with the p21-Arc [Arp (actin-related protein) complex] subunit of the Arp2/3 complex. Association occurred through the N-terminal pleckstrin homology domain and the adjacent coiled-coil region of Tiam1. As a result, Tiam1 co-localizes with the Arp2/3 complex at sites of actin polymerization, such as epithelial cell-cell contacts and membrane ruffles. Deletion of the p21-Arc-binding domain in Tiam1 impairs its subcellular localization and capacity to activate Rac1, suggesting that binding to the Arp2/3 complex is important for the function of Tiam1. Indeed, blocking Arp2/3 activation with a WASP (Wiskott-Aldrich syndrome protein) inhibitor leads to subcellular relocalization of Tiam1 and decreased Rac activation. Conversely, functionally active Tiam1, but not a GEF-deficient mutant, promotes activation of the Arp2/3 complex and its association with cytoskeletal components, indicating that Tiam1 and Arp2/3 are mutually dependent for their correct localization and signalling. Our data suggests a model in which the Arp2/3 complex acts as a scaffold to localize Tiam1, and thereby Rac activity, which are both required for activation of the Arp2/3 complex and further Arp2/3 recruitment. This 'self-amplifying' signalling module involving Tiam1, Rac and the Arp2/3 complex could thus drive actin polymerization at specific sites in cells that are required for dynamic morphological changes.  相似文献   

13.
Adenomatous polyposis coli (APC) is a multifunctional tumor suppressor protein that negatively regulates the Wnt signaling pathway. The APC gene is ubiquitously expressed in various tissues, especially throughout the large intestine and central nervous system. Mutations in the gene encoding APC have been found in most colorectal cancers and in other types of cancer. The APC gene product is a large multidomain protein that interacts with a variety of proteins, many of which bind to the well conserved armadillo repeat domain of APC. Through its binding partners, APC affects a large number of important cellular processes, including cell-cell adhesion, cell migration, organization of the actin and microtubule cytoskeletons, spindle formation and chromosome segregation. The molecular mechanisms that control these diverse APC functions are only partly understood. Here we describe the identification of an additional APC armadillo repeat binding partner - the Striatin protein. The Striatin family members are multidomain molecules that are mainly neuronal and are thought to function as scaffolds. We have found that Striatin is expressed in epithelial cells and co-localizes with APC in the epithelial tight junction compartment and in neurite tips of PC12 cells. The junctional localization of APC and Striatin is actin-dependent. Depletion of APC or Striatin affected the localization of the tight junction protein ZO-1 and altered the organization of F-actin. These results raise the possibility that the contribution of APC to cell-cell adhesion may be through interaction with Striatin in the tight junction compartment of epithelial cells.  相似文献   

14.
Sporadic and familial colorectal tumours usually harbour biallelic adenomatous polyposis coli (APC)‐associated mutations that result in constitutive activation of Wnt signalling. Furthermore, APC activates Asef and Asef2, which are guanine‐nucleotide exchange factors specific for Rac1 and Cdc42. Here, we show that Asef and Asef2 expression is aberrantly enhanced in intestinal adenomas and tumours. We also show that deficiency of either Asef or Asef2 significantly reduces the number and size of adenomas in ApcMin/+ mice, which are heterozygous for an APC mutation and spontaneously develop adenomas in the intestine. We observed that the APC–Asef/Asef2 complex induces c‐Jun amino‐terminal kinase‐mediated transactivation of matrix metalloproteinase 9, and is required for the invasive activity of colorectal tumour cells. Furthermore, we show that Asef and Asef2 are required for tumour angiogenesis. These results suggest that Asef and Asef2 have a crucial role in intestinal adenoma formation and tumour progression, and might be promising molecular targets for the treatement of colorectal tumours.  相似文献   

15.
Cdc42, a member of the Rho subfamily of small GTPases, influences a wide range of activities including the establishment of cell polarity, migration, and the regulation of cell growth and differentiation. Here we describe the identification of an approximately 220-kDa protein that formed a stable complex with activated forms of Cdc42 and thereby showed characteristics of a downstream target/effector for this GTPase. However, molecular cloning of the cDNA encoding this protein (p220) revealed that it was highly related to Zizimin-1 and identical in sequence to a gene product in the data base designated DOCK11, which are members of the DOCK180 family of guanine nucleotide exchange factors (GEFs) for Cdc42 and Rac. Biochemical characterization shows that p220 is a specific GEF for Cdc42, with the GEF activity originating from its DHR2 (for DOCK homology region 2) domain. Nucleotide-depleted Cdc42 forms a stable complex with the DHR2 domain, whereas the binding of activated Cdc42 requires both the DHR2 domain and residues 66-126 within the amino-terminal portion of p220. Moreover, the full-length protein shows markedly higher GEF activity than the isolated DHR2 domain, whereas removal of the amino-terminal 126 amino acids necessary for binding-activated Cdc42 dramatically diminishes the activity. These and other results point to activated Cdc42 providing a positive feedback regulation of the GEF activity of p220. Thus, we refer to p220/DOCK11 as activated Cdc42-associated GEF, befitting its functional activity.  相似文献   

16.
Autoinhibition of the Rho guanine nucleotide exchange factor ASEF is relieved by interaction with the APC tumor suppressor. Here we show that binding of the armadillo repeats of APC to a 'core APC-binding' (CAB) motif within ASEF, or truncation of the SH3 domain of ASEF, relieves autoinhibition, allowing the specific activation of CDC42. Structural determination of autoinhibited ASEF reveals that the SH3 domain forms an extensive interface with the catalytic DH and PH domains to obstruct binding and activation of CDC42, and the CAB motif is positioned adjacent to the SH3 domain to facilitate activation by APC. In colorectal cancer cell lines, full-length, but not truncated, APC activates CDC42 in an ASEF-dependent manner to suppress anchorage-independent growth. We therefore propose a model in which ASEF acts as a tumor suppressor when activated by APC and inactivation of ASEF by mutation or APC truncation promotes tumorigenesis.  相似文献   

17.
The Dbl family guanine-nucleotide exchange factors (GEFs) for Rho GTPases share the structural array of a Dbl homology (DH) domain in tandem with a Pleckstrin homology (PH) domain. For oncogenic Dbl, the DH domain is responsible for the GEF activity, and the DH-PH module constitutes the minimum structural unit required for cellular transformation. To understand the structure-function relationship of the DH domain, we have investigated the role of specific residues of the DH domain of Dbl in interaction with Rho GTPases and in Dbl-induced transformation. Alanine substitution mutagenesis identified a panel of DH mutants made in the alpha1, alpha6, and alpha9 regions and the PH junction site that suffer complete or partial loss of GEF activity toward Cdc42 and RhoA. Kinetic and binding analysis of these mutants revealed that although most displayed decreased k(cat) values in the GEF reaction, the substrate binding activities of T506A and R634A were significantly reduced. E502A, Q633A, and N673A/D674A, on the other hand, retained the binding capability to the Rho GTPases but lost the GEF catalytic activity. In general, the in vitro GEF activity of the DH mutants correlated with the in vivo Cdc42- and RhoA-activating potential, and the GEF catalytic efficiency mirrored the transforming activity in NIH 3T3 cells. Moreover, the N673A/D674A mutant exhibited a potent dominant-negative effect on serum-induced cell growth and caused retraction of actin structures. These studies identify important sites of the DH domain involved in binding or catalysis of Rho proteins and demonstrate that maintaining a threshold of GEF catalytic activity, in addition to the Rho GTPase binding activity, is essential for efficient transformation by oncogenic Dbl.  相似文献   

18.
Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction.  相似文献   

19.
Dbl protein and DH (Dbl homology) domains are key regulators of RhoGTPases and promote GDP release from the complex with GTPase. About 70 DH-containing proteins are found. DH domain is localized in tandem with PH (pleckstrin homology) domain in many proteins. Bcr protein is a partner of Abl in reciprocal translocation t(9;22) which leads to Philadelphia chromosome formation. In the present study we have cloned Bcr DH and PH domains into the vector for mammalian expression. GEF activity of Bcr DH domain was studied alone and together with PH domain. Our data suggest, that Bcr DH domains does not reveal GEF activity against RhoGTPases RhoA, Cdc42 and Racl subfamilies in vivo.  相似文献   

20.
The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a “model” peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号