首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
G Mauco  H Chap  M F Simon  L Douste-Blazy 《Biochimie》1978,60(6-7):653-661
Incubation of 32P-labelled platelets with Clostridium welchii phospholipase C greatly stimulates 32P-incorporation into phosphatidic and lysophosphatidic acids. A net synthesis is demonstrated for both phospholipids, which exhibit identical specific radioactivities. Phosphatidic acid production roughly parallels the phospholipase C-induced aggregation, whereas lysophosphatidic acid appears secondarily during cell lysis. The same qualitative variations are observed during thrombin-induced aggregation. At the physiological pH used throughout the incubations, platelets display no phospholipase A activity towards phosphatidic acid, whereas diglycerides are deacylated by platelet lysates. On the basis of these findings, a mechanism for phosphatidic and lysophosphatidic acid production is proposed, involving a phosphorylation of the di- and monoglycerides formed upon phospholipase C and lipase action. The possible role of such a pathway in regulating arachidonic acid release from phospholipids during platelet activation is discussed.  相似文献   

2.
This study investigated the involvement of Galpha(13) switch region I (SRI) in protease-activated receptor 1 (PAR1)-mediated platelet function and signaling. To this end, myristoylated peptides representing the Galpha(13) SRI (Myr-G(13)SRI(pep)) and its random counterpart were evaluated for their effects on PAR1 activation. Initial studies demonstrated that Myr-G(13)SRI(pep) and Myr-G(13)SRI(Random-pep) were equally taken up by human platelets and did not interfere with PAR1-ligand interaction. Subsequent experiments revealed that Myr-G(13)SRI(pep) specifically bound to platelet RhoA guanine nucleotide exchange factor (p115RhoGEF) and blocked PAR1-mediated RhoA activation in platelets and human embryonic kidney cells. These results suggest a direct interaction of Galpha(13) SRI with p115RhoGEF and a mechanism for Myr-G(13)SRI(pep) inhibition of RhoA activation. Platelet function studies demonstrated that Myr-G(13)SRI(pep) specifically inhibited PAR1-stimulated shape change, aggregation, and secretion in a dose-dependent manner but did not inhibit platelet activation induced by either ADP or A23187. It was also found that Myr-G(13)SRI(pep) inhibited low dose, but not high dose, thrombin-induced aggregation. Additional experiments showed that PAR1-mediated calcium mobilization was partially blocked by Myr-G(13)SRI(pep) but not by the Rho kinase inhibitor Y-27632. Finally, Myr-G(13)SRI(pep) effectively inhibited PAR1-induced stress fiber formation and cell contraction in endothelial cells. Collectively, these results suggest the following: 1) interaction of Galpha(13) SRI with p115RhoGEF is required for G(13)-mediated RhoA activation in platelets; 2) signaling through the G(13) pathway is critical for PAR1-mediated human platelet functional changes and low dose thrombin-induced aggregation; and 3) G(13) signaling elicits calcium mobilization in human platelets through a Rho kinase-independent mechanism.  相似文献   

3.
Factor XII deficiency has been postulated to be a risk factor for thrombosis suggesting that factor XII is an antithrombotic protein. The biochemical mechanism leading to this clinical observation is unknown. We have previously reported high molecular weight kininogen (HK) inhibition of thrombin-induced platelet aggregation by binding to the platelet glycoprotein (GP) Ib-IX-V complex. Although factor XII will bind to the intact platelet through GP Ibalpha (glycocalicin) without activation, we now report that factor XIIa (0. 37 microm), but not factor XII zymogen, is required for the inhibition of thrombin-induced platelet aggregation. Factor XIIa had no significant effect on SFLLRN-induced platelet aggregation. Moreover, an antibody to the thrombin site on protease-activated receptor-1 failed to block factor XII binding to platelets. Inhibition of thrombin-induced platelet aggregation was demonstrated with factor XIIa but not with factor XII zymogen or factor XIIf, indicating that the conformational exposure of the heavy chain following proteolytic activation is required for inhibition. However, inactivation of the catalytic activity of factor XIIa did not affect the inhibition of thrombin-induced platelet aggregation. Factor XII showed displacement of biotin-labeled HK (30 nm) binding to gel-filtered platelets and, at concentrations of 50 nm, was able to block 50% of the HK binding, suggesting involvement of the GP Ib complex. Antibodies to GP Ib and GP IX, which inhibited HK binding to platelets, did not block factor XII binding. However, using a biosensor, which monitors protein-protein interactions, both HK and factor XII bind to GP Ibalpha. Factor XII may serve to regulate thrombin binding to the GP Ib receptor by co-localizing with HK, to control the extent of platelet aggregation in vivo.  相似文献   

4.
Cultured astrocytoma cells were tested for their ability to generate a nitric-oxide like factor using platelet aggregation as a bioassay. Incubation of astrocytoma cells with human washed platelets resulted in an inhibition of thrombin-induced platelet aggregation which was proportional to the number of astrocytoma cells added. The inhibition was potentiated by superoxide dismutase (SOD) and prevented by oxyhaemoglobin (oxyHb). The inhibitory activity of astrocytoma cells was also prevented by the NO biosynthesis inhibitor NG-monomethyl-L-arginine (MeArg), an effect reversed by co-incubation with L-arginine (L-Arg) but not D-arginine (D-Arg). These results demonstrate that astrocytoma cells release, independent of added agonist, a factor with the same pharmacological profile as NO, which is likely to be derived from L-arginine.  相似文献   

5.
Platelets were activated with freezing/thawing and thrombin stimulation, and platelet microparticles generated following platelet activation were isolated with ultracentrifugation. The effects of platelet microparticles on platelet activation were studied with annexin V assay, protein tyrosine phosphorylation, and platelet aggregation. Freezing-induced platelet microparticles decreased but thrombin-induced platelet microparticles increased platelet annexin V binding and aggregation. Freshly washed platelets were cryopreserved using epinephrine and dimethyl sulfoxide (Me(2)SO) as combined cryoprotectants, and stimulated with thrombin-induced platelet microparticles. Following incubation of thrombin-induced platelet microparticles, the reaction time of platelets to agonists decreased but the percentages of aggregation increased, such as washed platelets from 44% +/- 30 to 92% +/- 7, p < 0.001, and cryopreserved platelets from 66% +/- 10 to 77% +/- 7, p < 0.02. By increasing platelet aggregability, platelet microparticles recovered after thrombin stimulation improved platelet function for transfusion. A 53-kDa platelet microparticle protein showed little phosphorylation if it was released from resting platelets or platelets stimulated with ADP, epinephrine, propyl gallate or dephosphorylation if it was derived from ionophore A 23187-stimulated platelets. However, the same protein released from frozen platelets showed significant tyrosine phosphorylation. Since a microparticle protein with 53 kDa was compatible with protein tyrosine phosphatase-1B (PTP-1B), its phosphorylation suggests the inhibition of enzyme activity. The microparticle proteins derived from thrombin-stimulated platelets were significantly phosphorylated at 64 kDa and pp60c-src, suggesting that the activation of tyrosine kinases represents a possible mechanism of thrombin-induced platelet microparticles to improve platelet aggregation.  相似文献   

6.
In order to better understand the molecular mechanisms of platelet granule secretion, we evaluated the effect of activation-induced degranulation on three functional platelet SNARE proteins, SNAP-23, VAMP-3, and syntaxin 4. Initial studies showed that SNAP-23 is lost upon SFLLRN-induced platelet activation. Experiments with permeabilized platelets demonstrated that proteolysis of SNAP-23 was Ca(2+)-dependent. Ca(2+)-dependent proteolysis of SNAP-23 was inhibited by the cell-permeable calpain inhibitors, calpeptin and E-64d, as well as by the naturally occurring calpain inhibitor, calpastatin. In addition, purified calpain cleaved SNAP-23 in permeabilized platelets in a dose-dependent manner. In intact platelets, calpeptin prevented SFLLRN-induced degradation of SNAP-23. In contrast, calpeptin did not prevent SFLLRN-induced degradation of VAMP-3 and syntaxin 4 did not undergo substantial proteolysis following platelet activation. Calpain-induced cleavage of SNAP-23 was a late event occurring between 2.5 and 5 min following exposure of permeabilized platelets to Ca(2+). Experiments evaluating platelet alpha-granule secretion demonstrated that incubation of permeabilized platelets with 10 microM Ca(2+) prior to exposure to ATP inhibited ATP-dependent alpha-granule secretion from permeabilized platelets. SNAP-23 was cleaved under these conditions. Incubation of permeabilized platelets with either calpeptin or calpastatin prevented Ca(2+)-mediated degradation of SNAP-23 and reversed Ca(2+)-mediated inhibition of ATP-dependent alpha-granule secretion. Thus, activation of calpain prior to secretion results in loss of SNAP-23 and inhibits alpha-granule secretion. These studies suggest a mechanism whereby calpain activation serves to localize platelet secretion to areas of thrombus formation.  相似文献   

7.
Rat serosal mast cells were tested for their ability to generate a nitric oxide-like factor by two bioassay systems: inhibition of platelet aggregation and stimulation of mast cell guanylate cyclase. Incubation of rat serosal mast cells with human washed platelets resulted in an inhibition of thrombin-induced platelet aggregation proportional to the number of cells. The inhibition was potentiated by superoxide dismutase (SOD) and reversed by oxyhaemoglobin (oxyHb). The inhibitory activity of mast cells was also prevented by NG-monomethyl-L-arginine (MeArg), an effect reversed by co-incubation with L-Arg but not D-Arg. When mast cells alone were stirred at 1,000 rpm, a time-dependent increase in the levels of their cGMP but not cAMP was observed. This increase was reduced by pretreatment with MeArg. The inhibitory effect of MeArg was reversed by L-Arg but not D-Arg. These results demonstrate that rat mast cells release a factor with the same pharmacological profile as NO, and that this NO-like factor is derived from L-arginine.  相似文献   

8.
5'-p-Fluorosulfonylbenzoyl adenosine (FSBA), a nucleotide analog of ADP, has been shown to inhibit ADP-induced shape change, aggregation and exposure of fibrinogen binding sites concomitant with covalent modification of a single surface membrane polypeptide of Mr 100,000 (aggregin). Since thrombin can aggregate platelets which have been modified by FSBA and are refractory to ADP, we tested the hypothesis that thrombin-induced platelet aggregation might involve cleavage of aggregin. At a low concentration of thrombin (0.05 U/ml), platelet aggregation, exposure of fibrinogen receptors and cleavage of aggregin in FSBA-modified platelets did not occur, indicating ADP dependence. In contrast, incubation of [3H]FSBA-labeled intact platelets with a higher concentration of thrombin (0.2 U/ml) resulted in cleavage of radiolabeled aggregin, aggregation, and exposure of fibrinogen binding sites. Under identical conditions, aggregin in membranes isolated from [3H]FSBA-labeled platelets was not cleaved by thrombin. Thrombin-induced platelet aggregation and cleavage of aggregin were concomitantly inhibited by a mixture of 2-deoxy-D-glucose, D-gluconic acid 1,5-lactone, and antimycin A. These results suggest that thrombin cleaves aggregin indirectly by activating an endogeneous protease. Thrombin is known to elevate intracellular Ca2+ concentration and thereby activates intracellular calcium dependent thiol proteases (calpains). In contrast to serine protease inhibitors, calpain inhibitors including leupeptin, antipain, and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (chelator of Ca2+) inhibited platelet aggregation and cleavage of aggregin in [3H]FSBA-labeled platelets. Leupeptin, at a concentration of 10-20 microM, used in these experiments, did not inhibit the amidolytic activity of thrombin, thrombin-induced platelet shape change, or the rise in intracellular Ca2+. Purified platelet calpain II caused aggregation of unmodified and FSBA-modified platelets and cleaved aggregin in [3H]FSBA-labeled platelets as well as in isolated membranes. The latter is in marked contrast to the action of thrombin on [3H]FSBA-labeled membranes. Thus, thrombin-induced platelet aggregation may involve intracellular activation of calpain which proteolytically cleaves aggregin thus unmasking latent fibrinogen receptors, a necessary prerequisite for platelet aggregation.  相似文献   

9.
The active site for uteroglobin inhibition of phospholipase A2 has been localized to a nonapeptide (P1) which is partially homologous to a nonapeptide (P2) in lipocortin, which also inhibits phospholipase A2. P1 and P2 share an identical tetrapeptide (P4) which is required for inhibition, although P4 alone does not inhibit this enzyme. We found the mechanism of inhibition of platelet aggregation and secretion by the nonapeptides and P4 varied depending on whether platelets were thrombin- or ADP-activated. All three peptides decrease thrombin esterolytic activity and thereby inhibit thrombin-induced platelet activation. P1 decreases ADP-induced aggregation and serotonin secretion by inhibiting phospholipase A2 whereas P4 decreases only aggregation by blocking fibrinogen binding to activated platelets. The P4 sequence in P1 may affect the interaction of P1 with platelets since the presence of P4 potentiates P1 inhibition of platelet activation.  相似文献   

10.
Diadenosine triphosphate (Ap3A) has been identified and quantified in human platelets using a coupled enzymatic assay specific for Ap3A, after fractionation of acidic extracts with high-performence liquid chromatography. Upon thrombin-induced aggregation, Ap3A is released together with the homologue diadenosine tetraphosphate (Ap4A).Extracts of human platelets do also contain enzymatic activities that degrade diadenosine tetraphosphate as well as diadenosine triphosphate. These enzymes, however, are not released during thrombin-induced aggregation of the platelets.  相似文献   

11.
In experiments in vitro, the effects of vasopressin and of its analogue DGVAP on aggregation of platelets are compared. Addition of peptides causes aggregation both in plasma rich in platelets both in humans and rats. In the human plasma DGVAP is a much stronger inductor of aggregation than vasopressin, whereas in the plasma of rats the effects are identical. Vasopressin and DGVAP considerably increase thrombin-induced aggregation of washed platelets of rats but do not influence ADP-induced aggregation of platelets. Thus, multifunctional action of these peptides on aggregation of platelets may depend both on their direct interaction with platelets and on a potential synergic action of peptides with other agonists.  相似文献   

12.
The effect of N-ethylmaleimide (NEM, 1-200 microM) on ADP- and thrombin-induced platelet aggregation and thrombin-induced increase in intracellular Ca2+ concentration was studied. Addition of NEM to platelets preaggregated with ADP or thrombin induces platelet disaggregation. The anti-aggregant activity of NEM was different for ADP- and thrombin-induced aggregations. At 200 microM concentration, NEM completely disaggregated ADP-induced aggregates and only partially disaggregated thrombin-aggregated platelets. NEM did not influence the thrombin-induced increase in cytoplasmic Ca2+ and had no effect on the basal level of Ca2+ in the cytosol of non-activated platelets. However, NEM decreased the level of thrombin-mobilized Ca2+ in the cytosol of activated platelets. Thus, NEM can induce disaggregation of ADP- and thrombin-preaggregated platelets by activating a system which removes Ca2+ from the platelet cytosol.  相似文献   

13.
The effect of ultraviolet radiation (UV-A, 360 nm) on the thrombin-induced aggregation of washed pig platelets as well as on the release of adenine nucleotides and proteins was studied. The level in platelets of adenine nucleotides, mainly ADP and ATP, decreased rapidly following the exposure of platelets to a high dose of UV-A (0.5 W/cm2, 30 min). Through thrombin-induced aggregation of irradiated platelets was inhibited, the release reaction occurred. The amount of the released adenine nucleotides and proteins was, however, dependent on the dose of UV light. These findings suggest that UV-A light can stimulate the platelet release reaction.  相似文献   

14.
By means of CM-Sephadex C-50 column chromatography and gel filtration on Sephadex G-75 and G-50 columns, a potent platelet aggregation inhibitor was purified and characterized. It was a glycoprotein with a molecular weight of 31,000. It was devoid of phospholipase A, ADPase, esterase and fibrino(geno)lytic activities. It inhibited dose-dependently the aggregation of washed platelets induced by collagen, thrombin, sodium arachidonate, platelet activating factor and ionophore A23187 with a similar IC50 (5-10 micrograms/ml). It was also active in platelet-rich plasma, with an IC50 of 10-15 micrograms/ml. The venom inhibitor reduced the elasticity of whole blood clot and inhibited the thrombin-induced clot retraction of platelet-rich plasma. These activities were related to its inhibitory activity on platelet aggregation rather than blood coagulation. The venom inhibitor had various effects on [14C]serotonin release stimulated by aggregation agonists. It had no effect on thromboxane B2 formation of platelets stimulated by sodium arachidonate, collagen and ionophore A23187. The presence of this venom inhibitor prior to the initiation of aggregation was a prerequisite for the maintenance of its maximal activity. It showed a similar inhibitory effect on collagen or thrombin-induced aggregation even when it was added after the platelets had undergone the shape change. High fibrinogen levels partially antagonized its activity. The venom inhibitor completely inhibited the fibrinogen-induced aggregation of alpha-chymotrypsin-treated platelets. It is concluded that this venom inhibitor interferes with the interaction of fibrinogen with fibrinogen receptors, leading to inhibition of aggregation.  相似文献   

15.
We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism.  相似文献   

16.
Upon activation, platelets release many active substances stored in alpha- and dense-core granules. However, the molecular mechanisms governing regulated exocytosis are not yet fully understood. Here, we have established an assay system using permeabilized platelets to analyze the Ca(2+)-induced exocytosis of both types of granules, focusing on RabGTPases. Incubation with Rab GDP dissociation inhibitor, an inhibitory regulator of RabGTPases, reduced membrane-bound RabGTPases extensively, and caused strong inhibition of the Ca(2+)-induced secretion of von Willebrand factor (vWF) stored in alpha-granules, but not that of [(3)H]5-hydroxytryptamine (5-HT) in dense-core granules. Specifically, Rab4 co-fractionated with vWF and P-selectin (an alpha-granule marker) upon separation of platelet organelles by density gradient centrifugation. Incubation of the permeabilized platelets with cell extracts expressing the dominant negative mutant of His-tagged Rab4S22N, but not with those of similar mutant His-Rab3BT36N, inhibited the vWF secretion, whereas neither of the cell extracts affected the [(3)H]5-HT secretion. Importantly, the inhibition of vWF secretion was rescued by depleting the cell extracts of the His-Rab4S22N with nickel beads. Thus, in platelets, the regulatory mechanisms governing alpha- and dense-core granule secretions are distinct, and Rab4 is an essential regulator of the Ca(2+)-induced exocytosis of alpha-granules.  相似文献   

17.
K Umegaki  K Nakamura  T Tomita 《Blut》1986,52(1):17-27
The thrombin-induced secretion of [14C]-serotonin and adenine nucleotides from stroke-prone spontaneously hypertensive rats (SHRSP) platelets was markedly reduced with the development of hypertension accompanying hypo-aggregability compared with that from age-matched Wistar Kyoto rats (WKY) platelets. Calcium Ionophore A23187-induced secretion and aggregation were also attenuated in SHRSP platelets. Additionally, an enhancement of platelet secretion as well as aggregation by extracellular Ca2+ was less in SHRSP platelets than in WKY platelets. The platelet contents of adenine nucleotides and serotonin were not different between SHRSP and WKY at 5-16 weeks of age whereas they became significantly lower in SHRSP beginning at 22 weeks. The serotonin content in SHRSP platelets at 36 weeks of age was only 55% of that in WKY platelets. It is suggested that the reduced platelet aggregation and secretion observed in SHRSP platelets at ages lower than approximately 20 weeks are not secondary phenomena to the circulation of degranulated platelets, but the primary defect of SHRSP platelets appears to be an impaired function of Ca2+.  相似文献   

18.
The activation of phospholipase C in human platelets is coupled to agonist receptors via guanine nucleotide-binding protein(s), and prior treatment of permeabilized platelets with GTP gamma S, GDP beta S, or pertussis toxin modifies platelet responses to agonists. Pertussis toxin is thought to act primarily as an uncoupler of Gi from cell receptors due to its ADP-ribosylating activity. However, we have found that pertussis toxin by itself can act as an agonist for intact or permeabilized platelets. Though believed to lack receptors for pertussis toxin, intact platelets, when incubated with the toxin (5-20 micrograms/ml), undergo aggregation and accumulate inositol trisphosphate and phosphatidic acid. Treatment of platelets with aspirin, incubation in the presence of creatine phosphate/creatine phosphokinase, or omission of Ca2+ and fibrinogen do not affect toxin-mediated phospholipase C activation. These effects are not observed with the ADP-ribosylating S1 monomer of toxin in intact or permeabilized platelets. Further, modification of the holotoxin with N-ethylmaleimide eliminates the toxin's ADP-ribosylating activity but does not affect its promotion of platelet aggregation and phospholipase C activation. Therefore, the activating effect of holotoxin is separable from its ADP-ribosylating activity and does not depend either upon cyclooxygenase or the ADP that may be released during platelet activation. Given the combined potentially stimulatory and inhibitory effects of pertussis holotoxin, we suggest caution in interpretation of results with this material.  相似文献   

19.
An inactive derivative of wheat germ agglutinin, which is a strong activator of blood platelets, was prepared by selective chemical modification of the lectin with cyanogen bromide at acid pH. The derivative was then used as a probe to learn about the initial events in platelet stimulation by physiological agents. Amino acid analysis of the modified lectin confirmed specific cleavage of a methionine residue. Gel filtration studies indicated a molecular weight for the lectin derivative similar to the unmodified lectin. In gel electrophoresis in the presence of sodium dodecyl sulfate, reduced samples of the derivative showed two bands and the main component migrated slightly faster than the native lectin. The derivative retained the capacity to precipitate an antibody to the lectin although at least one of the antigenic sites was lost due to chemical modification. The derivative did not compete with the unmodified lectin for binding to platelets. Unlike the parent lectin, the derivative did not aggregate platelets even at a ten fold higher concentration. Under similar conditions, there were about 1.0 X 10(5) binding sites/platelet for the lectin derivative with an apparent dissociation constant of 1.7 microM compared to 5 X 10(5) sites/cell and a dissociation constant of 0.4 microM for the native lectin. Overnight incubation of platelets or red cells with the derivative in microtiter plates showed about 2-5% agglutinating activity for the derivative compared to the unmodified lectin. Incubation of platelets with the lectin derivative inhibited platelet aggregation by thrombin while aggregation induced by a number of other agents was not significantly affected. This inhibitory effect of the lectin derivative on thrombin-induced platelet aggregation could be readily reversed with GlcNAc. The lectin derivative may be a useful tool to explore the structure-function relationship of cell surface components.  相似文献   

20.
Human platelets bind on an average of 5 × 105 molecules of lentil lectin/cell with an apparent dissociation constant of 3 × 10?7 M. The lectin binds mainly to surface glycoprotein II with an apparent molecular weight of 125,000. Lentil lectin neither caused aggregation nor did it inhibit platelet aggregation by other agents. It had no influence on the binding of thrombin to platelets or on thrombin-induced clot retraction. The hypothesis that glycoprotein II mediates platelet aggregation needs reevaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号