首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The activity of L-tryptophan synthase (TS, E.C.4.2.1.20) was comparedin vivo in seedlings of plants high in L-tryptophan (L-trp) (pea and kohlrabi) and low in this amino acid (maize). In maize the TS was studied both in the normal and in the opaque-2 genotype that forms an endosperm richer in essential amino acids. The activity of TS was determined on the basis of the increase in radioactivity of the chromatographically purified L-trp-14C, synthetized after vacuum infiltration of L-serine-14C-(U) and ineubation for 24 h. As regards the TS activity in seedlings, maize is comparable to pea and kohlrabi; in contrast to this TS is less active in pea seedlings, which can be attributed to the presence of TS inhibitor (CHEN and BOLL 1969). In ripening maize kernels and leaves adjacent to the ear the TS activity is about 20 times lower than in seedlings. The differences in the activity of TS in the genotypes of maize could not be detected, even at the period of seed ripening. Therefore the differences in L-trp content in the investigated plants cannot be explained by a differing activity of TS. TS is probably not the determining regulator of L-trp level in plants, its activity is relatively high even in plants low in L-trp.  相似文献   

2.
The activity of glutamate dehydrogenase (l-glutamate: NAD oxidoreductase, EC 1.4.1.2.; GDH) of rice plants changes in response to the nitrogen source supplied to the culture solution. The activity of NADH-GDH(aminating) in roots is rapidly increased by the addition of ammonia, whereas the activity in shoots is much less affected by nitrogen supply. The activity increased with increasing concentration of ammonia at least up to 14.3 mM. In roots GDH activity was found in both the mitochondrial and soluble fractions. The increase of NADH-GDH activity caused by the ammonia treatment occurs mainly in the latter fraction. The new band with GDH activity was detected on the zymogram of polyacrylamide gel electrophoresis and this inducible enzyme is active with both NAD and NADP. On the other hand, the constitutive enzyme activity active with NAD is also increased by the ammonia treatment. The increase of enzyme activity is prevented by the addition of cycloheximide or chloramphenicol to culture medium. The incorporation of 14C-leucine(U) into GDH proteins was also studied using polyacrylamide gel electrophoresis. Higher radioactivity was found in induced samples than in non-induced ones. These results show that the increase of GDH activity in roots by ammonia treatment seems to depend on de novo protein synthesis.  相似文献   

3.
In adult male and female rat liver, the activity of NAD(+)-and NADP(+)-dependent glutamate dehydrogenase (GDH) was microquantitatively measured in tissue samples of 50-150 ng, microdissected continuously along the sinusoidal length. Total activity of GDH with NAD+ as co-factor was found to be higher by a ratio of about 1:2.3 than with NADP+. All intra-acinar enzyme profiles, irrespective of sex, showed an increasing gradient of GDH activity from the periportal beginning to the perivenous end. These findings are at variance with the immunohistochemical localization of GDH in rat liver. The microquantitative GDH profiles with higher perivenous values could indicate a more pronounced glutamine synthesis in Zone 3 of the liver acinus.  相似文献   

4.
Glutamate dehydrogenase (GDH) from vertebrates is unusual among NAD(P)H-dependent dehydrogenases in that it can use either NAD(H) or NADP(H) as cofactor. In this study, we measure the rate of cofactor utilization by bovine GDH when both cofactors are present. Methods for both reaction directions were developed, and for the first time, to our knowledge, the GDH activity has been simultaneously studied in the presence of both NAD(H) and NADP(H). Our data indicate that NADP(H) has inhibitory effects on the rate of NAD(H) utilization by GDH, a characteristic of GDH not previously recognized. The response of GDH to allosteric activators in the presence of NAD(H) and NADP(H) suggests that ADP and leucine moderate much of the inhibitory effect of NADP(H) on the utilization of NAD(H). These results illustrate that simple assumptions of cofactor preference by mammalian GDH are incomplete without an appreciation of allosteric effects when both cofactors are simultaneously present.  相似文献   

5.
NAD(P)-dependent glucose-1-dehydrogenase (GDH) has been used for glucose determination and NAD(P)H production in bioreactors. Thermostable glucose dehydrogenase exhibits potential advantage for its application in biological processes. The function of the putative GDH gene (ST1704, 360-encoding amino acids) annotated from the total genome analysis of a thermoacidophilic archeaon Sulfolobus tokodaii strain 7 was investigated to develop more effective application of GDH. The gene encoding S. tokodaii GDH was cloned and the activity was expressed in Escherichia coli, which did not originally possess GDH. This shows that the gene (ST1704) codes the sequence of GDH. The enzyme was effectively purified from the recombinant E. coli with three steps containing a heat treatment and two successive chromatographies. The native enzyme (molecular mass: 160 kDa) is composed of a tetrameric structure with a type of subunit (41 kDa). The enzyme utilized both NAD and NADP as the coenzyme. The maximum activity for glucose oxidation in the presence of NAD was observed around pH 9 and 75 °C in the presence of 20 mM Mg2+. The enzyme showed broad substrate specificity: several monosaccarides such as 6-deoxy- -glucose, 2-amino-2-deoxy- -glucose and -xylose were oxidized as well as -glucose as the electron donor. -Mannose, -ribose and glucose-6-phosphate were inert as the donor. The enzyme showed high thermostability: remarkable loss of activity was not observed up to 80 °C by incubation for 15 min at pH 8.0. In addition, the enzyme was stable in a wide pH range of 5.0–10.5 by incubation at 37 °C. From the steady-state kinetic analysis, the enzyme reaction of -glucose oxidation proceeds via a sequential ordered Bi–Bi mechanism: NAD and -glucose bind to the enzyme in this order and then -glucono-1,5-lactone and NADH are released from the enzyme in this order. The amino acid sequence alignment showed that S. tokodaii GDH exhibited high homology with the Sulfolobus solfataricus hypothetical glucose dehydrogenase and a Thermoplasma acidophilum one.  相似文献   

6.
The transaminations of L-tryptophan (L-trp) and of L-phenylalanine (L-phe) are catalysedin vitro by the same non-specific aminotransferase. The transaminations procceed at the same pH (pH 8.5) and temperature (45 °C) optima, have parallel increases in activity with addition of the coenzyme pyridoxal phosphate (PRP) and have identical elution characteristics in gel chromatography. The enzyme from pea seedlings has a relatively weak affinity for both amino acids (Km L-trp = 4.16 × 10−1 mmol 1−1; Km L-phe = 2.10 × 10−1 mmol 1−1). Differences in affinity for a series of keto acids in the pea enzyme were observed, with pyruvate having the strongest and glyoxylate the weakest affinity. Transamination of L-trp and L-phe was demonstrated by enzyme extracts from pea, maize and tomato, but was not detected in kohlrabi. The amino acids L-asparagine (L-asn), L-phe, L-lysine (L-lys), L-methionine (L-met) have distinct inhibitory effects on the transamination of L-trp. Indolylacetylaspartate and tryptophol were shown to be competitive inhibitors. The regulation at the molecular level of L-trp transaminase activity is discussed.  相似文献   

7.
Psychrobacter sp. TAD1 is a psychrotolerant bacterium from Antarctic frozen continental water that grows from 2 to 25 degrees C with optimal growth rate at 20 degrees C. The new isolate contains two glutamate dehydrogenases (GDH), differing in their cofactor specificities, subunit sizes and arrangements, and thermal properties. NADP+-dependent GDH is a hexamer of 47 kDa subunits and it is comparable to other hexameric GDHs of family-I from bacteria and lower eukaria. The NAD+-dependent enzyme, described in this communication, has a subunit weight of 160 kDa and belongs to the novel class of GDHs with large size subunits. The enzyme is a dimer; this oligomeric arrangement has not been reported previously for GDH. Both enzymes have an apparent optimum temperature for activity of approximately 20 degrees C, but their cold activities and thermal labilities are different. The NAD+-dependent enzyme is more cold active: at 10 C it retains 50% of its maximal activity, compared with 10% for the NADP+-dependent enzyme. The NADP+-dependent enzyme is more heat stable, losing only 10% activity after heating for 30 min, compared with 95% for the NAD+-dependent enzyme. It is concluded that in Psychrobacter sp. TAD1 not only does NAD+-dependent GDH have a novel subunit molecular weight and arrangement, but that its polypeptide chains are folded differently from those of NADP+-dependent GDH, providing different cold-active properties to the two enzymes.  相似文献   

8.
Bacillus subtilis PCI 219 has a single glutamate dehydrogenase (GDH) [EC 1.4.1.3] with dual coenzyme specificity [for NAD(H) and NADP(H)]. The enzyme was purified 800-fold from crude extracts of B. subtilis from the post-exponential phase of growth and showed one significant protein band on gel electrophoresis. This band was determined, by activity staining, to have all the GDH nucleotide specificities. Its molecular weight was estimated to be 250,000+/-20,000 by gel filtration, and 270,000+/-30,000 by zone centrifugation in a sucrose density gradient. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that GDH has a subunit size of about 57,000. The pI of GDH was found to bepH 3.7 by isoelectric focusing. GDH exhibited nonlinear kinetics in the reduction of NAD+, and in the reverse direction, the substrate, NH4+, was strongly inhibitory at high concentrations. Purine nucleotides did not affect the activity. The oxidative demination of glutamate was significantly inhibited by the metabolites oxaloacetate and citrate, which acted as allosteric effectors of this enzyme,inhibiting the reaction in one direction. The pH optimum of each of the activities of GDH and the stability of GDH are also reported.  相似文献   

9.
The activities of the following enzymes were studied in connection with dinitrogen fixation in pea bacteroids: glutamine synthetase(L-glutamate: ammonia ligase (ADP-forming)(EC 6.3.1.2)(GS); glutamate dehydrogenase (NADP+)(L-glutamate: NADP+ oxidoreductase (deaminating)(EC 1.4.1.4)(GDH); glutamate synthase (L-glutamine: 2-exeglutarate aminotransferase (NADPH-oxidizing))(EC 2.6.1.53)(GOGAT). GS activity was high throughout the growth of the plant and GOGAT activity was always low. It is unlikely that GDH or the GS-GOGAT pathway can account for the incorporation of ammonia from dinitrogen fixation in the pea bacteroid,  相似文献   

10.
Glutamate dehydrogenase (GDH) was purified from rough endoplasmic reticulum (RER) in rat liver using anion-exchange and affinity chromatography. As GDH has been known as an enzyme that exists mainly in the matrix of mitochondria, the properties of purified GDH were compared with those of mitochondrial GDH. The GDH activity in 0. 1% Triton X-100-treated RER subcellular fraction was nearly the same as intact RER, whereas that of the mitochondrial fraction increased by 50% after the detergent treatment. In kinetic values, in addition, mitochondrial GDH had a higher K(m) value for NADP(+) than NAD(+), whereas the K(m) value for NAD(+) was higher than that for NADP(+) in the case of GDH of RER, which showed a difference in specificity to cofactors. Moreover, when two GDH isoproteins were incubated at 42 degrees C or treated with trypsin, GDH from RER was more stable against heat inactivation and less susceptible to proteolysis than mitochondrial GDH in both cases. In addition, GDH of RER had at least five amino acids different from mitochondrial GDH when sequences of N-terminal and several internal peptide fragments were analyzed. These results showed that GDH of RER is another isoprotein of GDH, of whose properties are different from those of mitochondrial GDH.  相似文献   

11.
A gene encoding glutamate dehydrogenase (GDH) was found in the genome sequence of a commensal thermophile, Symbiobacterium toebii. The amino acid sequence deduced from the gdh I of S. toebii was well conserved with other thermostable GDHs. The gdh I which encodes GDH consisting of 409 amino acids was cloned and expressed in E. coli DH5 under the control of a highly constitutive expression (HCE) promoter in a pHCE system. The recombinant GDH was expressed without addition of any inducers in a soluble form. The molecular mass of the GDH was estimated to be 263 kDa by Superose 6 HR gel filtration chromatography and 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicating that the GDH was composed of hexameric form. The optimal temperature and pH of the purified enzyme were 60 °C and 9.0, respectively, and the purified GDH retained more than 75% of its original activity after an incubation at 70 °C for 30 min. Although NADP(H) was the preferred cofactor, S. toebii GDH was able to utilize either NADP(H) or NAD(H) as coenzyme.  相似文献   

12.
Streptomyces fradiae has two chromatographically distinct forms of glutamate dehydrogenase (GDH): one GDH utilizes NAD as coenzyme, the other uses NADP. The intracellular level of both GDHs is strongly regulated by the nitrogen source in the growth medium. NADP-dependent GDH was purified to homogeneity from crude extracts of S. fradiae. The Mr of the native enzyme was determined to be 200,000 by size-exclusion high-performance liquid chromatography whereas after sodium dodecyl sulphate-polyacrylamide gel electrophoresis one major band of Mr 49,000 was found, suggesting that the enzyme is a tetramer. The enzyme was highly specific for the substrates 2-oxoglutarate and L-glutamate, and required NADP, which could not be replaced by NAD, as a cofactor. The pH optimum was 9.2 for oxidative deamination of glutamate and 8.4 for reductive amination of 2-oxoglutarate. The Michaelis constants (Km) were 28.6 mM for L-glutamate and 0.12 mM for NADP. Km values for reductive amination were 1.54 mM for 2-oxoglutarate, 0.07 mM for NADPH and 30.8 mM for NH+4. The enzyme activity was significantly reduced by adenine nucleotides, particularly ATP.  相似文献   

13.
A method involving affinity chromatography on the yellow dye Remazol Brilliant Gelb GL to highly purify the cytoplasmic isoenzyme of glucose-6-phosphate dehydrogenase from pea shoots is described. Purification is at least 6000-fold. The specific activity of the purified enzyme is 185 mumol NADP reduced/min per mg protein. The preparation was free from any contamination of chloroplastic isoenzyme. The purified enzyme retains its activity in the presence of reducing agents which, in contrast, inactivate the chloroplast enzyme. The state of activity of the cytoplasmic and the chloroplastic isoenzyme in illuminated or darkened pea leaves was investigated using specific antibodies. While upon illumination the chloroplastic isoenzyme was inactivated by 80 to 90%, we could not find any change in activity of the cytoplasmic glucose-6-phosphate dehydrogenase. ATP, ADP, NAD, NADH, and various sugar phosphates do not inhibit the enzyme activity. Only NADPH is a strong competitive inhibitor with respect to NADP, suggesting that the enzyme is regulated by feedback inhibition by one of its products. Mg2+ ions have no influence on the activity of the enzyme. The molecular weight has found to be 240,000 for the native enzyme and 60,000 for the subunit. Throughout the purification procedure the enzyme was very unstable unless NADP was present in the buffer.  相似文献   

14.
An oxidized nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide (NADP+/NAD+) nonspecific L-glutamate dehydrogenase from Bacteroides thetaiotaomicron was purified 40-fold (NADP+ or NAD+ activity) over crude cell extract by heat treatment, (NH4)2SO2 fractionation, diethylaminoethyl-cellulose, Bio-Gel A 1.5m, and hydroxylapatite chromatography. Both NADP+- and NAD+-dependent activities coeluted from all chromatographic treatments. Moreover, a constant ratio of NADP+/NAD+ specific activities was demonstrated at each purification step. Both activities also comigrated in 6% nondenaturing polyacrylamide gels. Affinity chromatography of the 40-fold-purified enzyme using Procion RED HE-3B gave a preparation containing both NADP+- and NAD+-linked activities which showed a single protein band of 48,5000 molecular weight after sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The dual pyridine nucleotide nature of the enzyme was most readily apparent in the oxidative direction. Reductively, the enzyme was 30-fold more active with reduced NADP than with reduced NAD. Nonlinear concave 1/V versus 1/S plots were observed for reduced NADP and NH4Cl. Salts (0.1 M) stimulated the NADP+-linked reaction, inhibited the NAD+-linked reaction, and had little effect on the reduced NADP-dependent reaction. The stimulatory effect of salts (NADP+) was nonspecific, regardless of the anion or cation, whereas the degree of NAD+-linked inhibition decreased in the order to I- greater than Br- greater than Cl- greater than F-. Both NADP+ and NAD+ glutamate dehydrogenase activities were also detected in cell extracts from representative strains of other bacteroides deoxyribonucleic acid homology groups.  相似文献   

15.
A cold-labile glutamate dehydrogenase (GDH, EC 1.4.1.3) has been purified to homogeneity from the crude extracts of Azospirillum brasilense. The purified enzyme shows a dual coenzyme specificity, and both the NADPH and NADH-dependent activities are equally cold-sensitive. The enzyme is highly specific for the substrates 2-oxoglutarate and glutamate. Kinetic studies with GDH indicate that the enzyme is primarily designed to catalyse the reductive amination of 2-oxoglutarate. The NADP+-linked activity of GDH showed Km values 2.5 X 10(-4) M and 1.0 X 10(-2) M for 2-oxoglutarate and glutamate respectively. NAD+-linked activity of GDH could be demonstrated only for the amination of 2-oxoglutarate but not for the deamination of glutamate. The Lineweaver-Burk plot with ammonia as substrate for NADPH-dependent activity shows a biphasic curve, indicating two apparent Km values (0.38 mM and 100 mM) for ammonia; the same plot for NADH-dependent activity shows only one apparent Km value (66 mM) for ammonia. The NADPH-dependent activity shows an optimum pH from 8.5 to 8.6 in Tris/HCl buffer, whereas in potassium phosphate buffer the activity shows a plateau from pH 8.4 to 10.0. At high pH (greater than 9.5) amino acids in general strongly inhibit the reductive amination reaction by their competition with 2-oxoglutarate for the binding site on GDH. The native enzyme has a Mr = 285000 +/- 20000 and appears to be composed of six identical subunits of Mr = 48000 +/- 2000. The GDH level in A. brasilense is strongly regulated by the nitrogen source in the growth medium.  相似文献   

16.
Electrophoretic studies were performed on enzymes concerned with the oxidation of malate in free-living and bacteroid cells of Mesorhizobium ciceri CC 1192, which forms nitrogen-fixing symbioses with chickpea (Cicer arietinum L.) plants. Two malate dehydrogenases were detected in extracts from both types of cells in native polyacrylamide electrophoresis gels that were stained for enzyme activity. One band of malate dehydrogenase activity was stained only in the presence of NADP+, whereas the other band was revealed with NAD+ but not NADP+. Further evidence for the occurrence of separate NAD- and NADP-dependent malate dehydrogenases was obtained from preliminary enzyme kinetic studies with crude extracts from free-living M. ciceri CC 1192 cells. Activity staining of electrophoretic gels also indicated the presence of two malic enzymes in free-living and bacteroid cells of M. ciceri CC 1192. One malic enzyme was active with both NAD+ and NADP+, whereas the other was specific for NADP+. Possible roles of the multiple forms of malate dehydrogenase and malic enzyme in nitrogen-fixing symbioses are discussed.  相似文献   

17.
A GDH gene from Halobacterium salinarum has been cloned and sequenced and the publication assigns the sequence to the NADP+-glutamate dehydrogenase of this organism. We have expressed this gene in Escherichia coli and find that it encodes an NAD+-dependent glutamate dehydrogenase without activity towards NADP+. Further, peptide sequence from the two corresponding proteins supports the view that the deposited sequence is indeed that of the NAD+-dependent glutamate dehydrogenase. Sequence from the NAD+-dependent protein matches the published gene sequence, whereas sequence from the NADP+ glutamate dehydrogenase does not.  相似文献   

18.
Cell-free extracts of Rhizobium meliloti contain a soluble lactate dehydrogenase (LDH-EC 1.1.1.27.). This was purified 250-fold by ammonium sulfate precipitation and filtration on different Sephadex gels. This enzyme catalyses the reduction of pyruvate to lactate in the presence of NADH and for the first time we report its ability to reduce indole-3-pyruvic acid (IPyA) to indole-3-lactic acid (ILA). Optimal conditions for activity and Km values for both substrates were determined. In the presence of NAD the reverse reaction could be demonstrated with the aliphatic substrate (lactate), but under our conditions it was not possible to achieve the oxidation of ILA to IPyA. The role of this LDH in the indole metabolism is discussed and a general reaction scheme is suggested.  相似文献   

19.
The biosynthesis of L-tryptophan (L-trp) from anthranilic acid-14C (AA-14C) in. undamaged organs of the seedlings of kohlrabi and pea, with high L-trp content and ma ze plants, with low L-trp content was compared. As for maize the experiments were carried oiut with normal and opaque-2 phenotypes, both with the seedlings and with the ripening kernels. AA-14C is metabolized in the plants to L-trp pool (i.e. free and bound L-trp, and secondary metabolites) and to glycosyl esters of AA (i.e. to simple glucosyl ester in pea and kohlrabi and more complex glycosides in maize). In maize seedlings L-trp-14C is synthesized relatively less. (40% in the 1st and 2nd leaf and 33% in the 3rd leaf of the total radioactivity of the incorporated AA-14C is transferred into the L-trp-14C pool after 24 h) than in kohlrabi (52% in the hypocotyl and 85% in the cotyledons) and in pea (58% in the 1st and the 2nd internode and 85% in the 3rd and the 4th internode). Thede novo formation of L-trp-14C is stoped earlier in maize (after 5 h) than in kohlrabi (after 15 h). The level of free L-trp-14C is relatively low ill maize (15% and 13% of the total radioactivity of the incorporated AA-14C is converted to free L-trp-14C and remains in this form after 24 h) in comparison with kohlrabi (31% and 60%) and pea (30% and 49%). In spite of this the formation of L-trp-14C from AA-14C is sufficient in maize to incorporate L-trp both into the proteins and into a secondary metabolite that is not yet defined. At the period of seedlings the incorporation in maize of L-trp into the proteins (11% and 10% of the activity of the incorporated AA-14C) is comparable with that in kohlrabi (11% and 17%), and it is maximum in pea (29% and 36%). Maize, at the stage of germination, thus forms proteins rich in L-trp. The formation of free L-trp is approximately ten times lower in ripening kernels and in the leaves adjacent to the ear and it further decreases in the course of the ripening of the kernels. Although the activity of the biosynthesis of the AA-14C → L-trp-14C pathway is relatively lower in maize than in kohlrabi and pea, this pathway is most responsible for the differences in the content of L-trp in these plants. Neither amitrol nor histidine affected the biosynthesis of L-trp in kohlrabi; the interaction of the biosynthetic pathways of L-trp and histidine known in microorganisms is thus not important in a higher plant.  相似文献   

20.
An NADP(+)-dependent D-xylose dehydrogenase from pig liver cytosol was purified about 2000-fold to apparent homogeneity with a yield of 15% and specific activity of 6 units/mg of protein. An Mr value of 62,000 was obtained by gel filtration. PAGE in the presence of SDS gave an Mr value of 32,000, suggesting that the native enzyme is a dimer of similar or identical subunits. D-Xylose, D-ribose, L-arabinose, 2-deoxy-D-glucose, D-glucose and D-mannose were substrates in the presence of NADP+ but the specificity constant (ratio kcat./Km(app.)) is, by far, much higher for D-xylose than for the other sugars. The enzyme is specific for NADP+; NAD+ is not reduced in the presence of D-xylose or other sugars. Initial-velocity studies for the forward direction with xylose or NADP+ concentrations varied at fixed concentrations of the nucleotide or the sugar respectively revealed a pattern of parallel lines in double-reciprocal plots. Km values for D-xylose and NADP+ were 8.8 mM and 0.99 mM respectively. Dead-end inhibition studies to confirm a ping-pong mechanism showed that NAD+ acted as an uncompetitive inhibitor versus NADP+ (Ki 5.8 mM) and as a competitive inhibitor versus xylose. D-Lyxose was a competitive inhibitor versus xylose and uncompetitive versus NADP+. These results fit better to a sequential compulsory ordered mechanism with NADP+ as the first substrate, but a ping-pong mechanism with xylose as the first substrate has not been ruled out. The presence of D-xylose dehydrogenase suggests that in mammalian liver D-xylose is utilized by a pathway other than the pentose phosphate pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号