首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome paints of the rat kangaroo ( Aepyprymnus rufuscens, 2n =32) were used to define chromosome regions in the long nosed potoroo ( Potorous tridactylus, 2n =12 female, 13 male) karyotype and localize these regions in three-dimensionally preserved nuclei of the potoroo to test the hypothesis that marsupial chromosomes have a radial distribution. In human nuclei chromosomes are distributed in a proposed radial fashion. Gene-rich chromosomes in the human interphase nucleus are preferentially located in the central area while gene-poor chromosomes are found more at the periphery of the nucleus; this feature is conserved in primates and chicken. Chromosome ordering in nuclei of P. tridactylus is related to their size and centromere position. Its relationship with replication patterns in interphase nuclei and metaphase was studied. In addition it was observed that the nucleus was not a smooth entity but had projections occupied by specific chromosome regions. Edited by: R. Allshire  相似文献   

2.
The trophozoït of Noctiluca miliaris has a large nucleus (30 ) with several nucleoli of considerable size that contain DNA fibrillae lying in the interspaces. — Before and during the first sporogenetic divisions, the nucleoli disintegrate, releasing towards the cytoplasma numerous groups of ribonucleic granules passing through the nuclear ampullae. At the end of the sporulation, there are no nucleoli visible in the nuclei and no ampullae. — The nucleoplasm diminishes, as the DNA filaments are built up, to form the meshes of a network which limit the masses of chromatic material that take the shape of chromosomes characterized by regular fibrillar arches, at the 8–16 nuclei stage. In their centre, there is an axial structure which remains intact during the chromosomal segregation; its function during mitosis seems to be important: supplementary layers of arches appear at this level. — The progressive condensation of the chromosomes is correlated to the sporogenetic evolution of the nuclei, not to the different phases of the mitotic cycle. — The karyokinesis is brought about, during early stages, by mere splitting of the chromatic mass and of its envelope, and later one by separation into two lots of chromosomes. The segregation of these chromosomes is effected by partial intervention and growth of the envelope of the nucleus; there is no centromeric structure visible. At the end of divisions, the nucleus is almost entirely formed by its chromosomes. — The nucleolar structure, the karyokinesis, the structure of the nuclear envelope and the chromosomal cycle show the particularly high evolution of Noctiluca, within the Dinoflagellata.  相似文献   

3.
为了解栽培种甘薯(徐薯18,Ipomoea batatas cv.XushuNo.18)的染色体结构,文章利用45SrDNA荧光原位杂交、自身基因组荧光原位杂交和银染技术对栽培种甘薯进行分子细胞遗传学研究。银染结果显示,徐薯18间期核有6对、8对和9对银染点;45SrDNA荧光原位杂交结果显示,徐薯18染色体上有8对或9对强弱不一的45SrDNA信号;自身基因组荧光原位杂交结果表明,所有染色体的全长分布强烈而密集的杂交信号,着丝粒区、近着丝粒区和端粒区有增强的信号带。  相似文献   

4.
A typical way of moving chromosomes is exemplified by mitotic segregation, in which the centromere is directly captured by spindle microtubules. In this study, we highlight another way of moving chromosomes remotely from outside the nucleus, which involves SUN and KASH domain nuclear envelope proteins. SUN and KASH domain protein families are known to connect the nucleus to cytoskeletal networks and play a role in migration and positioning of the nucleus. Recent studies in the fission yeast Schizossacharomyces pombe demonstrated an additional role for the SUN–KASH protein complex in chromosome movements. During meiotic prophase, telomeres are moved to rearrange chromosomes within the nucleus. The SUN–KASH protein complex located in the nuclear envelope is involved in this process. Telomeres are connected to the SUN protein on the nucleoplasmic side, and the dynein motor complex binds to the KASH protein on the cytoplasmic side. Telomeres are then moved along the nuclear envelope using cytoplasmic microtubules. These findings illustrate a general mechanism for transmitting a cytoskeletal driving force to chromosomes across the nuclear envelope. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Note added in proof Recently, a related article on C. elegans SUN protein has been published: Penkner A, Tang L, Novatchkova M, Ladurner M, Fridkin A, Gruenbaum Y, Schweizer D, Loidl J, Jantsch V (2007) The nuclear envelope protein Matefin/Sun-1 is required for homologous pairing in C. elegans meiosis. Dev Cell 12:873–885  相似文献   

5.
To test quantitatively whether there are systematic chromosome-chromosome associations within human interphase nuclei, interchanges between all possible heterologous pairs of chromosomes were measured with 24-color whole-chromosome painting (multiplex FISH), after damage to interphase lymphocytes by sparsely ionizing radiation in vitro. An excess of interchanges for a specific chromosome pair would indicate spatial proximity between the chromosomes comprising that pair. The experimental design was such that quite small deviations from randomness (extra pairwise interchanges within a group of chromosomes) would be detectable. The only statistically significant chromosome cluster was a group of five chromosomes previously observed to be preferentially located near the center of the nucleus. However, quantitatively, the overall deviation from randomness within the whole genome was small. Thus, whereas some chromosome-chromosome associations are clearly present, at the whole-chromosomal level, the predominant overall pattern appears to be spatially random.  相似文献   

6.
A bisexual species of the genus Artemia (Crustacea, Phyllopoda), Artemia franciscana Barigozzi of San Francisco Bay and a parthenogenetic population of Artemia sp. of Tsing-Tao (China), both with 42 chromosomes, were compared with respect to the microscopic structure of the interphase larval nucleus, the microscopical structure of the prophase chromosomes and the DNA structure. — Artemia franciscana exhibits several chromocenters in the resting nucleus, heterochromatic blocks located at the end of the prophase chromosomes, and a large amount of repetitive DNA (Alu I 110-bp fragments). The other Artemia sp. lacks chromocenters, heterochromatic blocks in the chromosomes, and the Alu I DNA. The two populations thus differ by a remarkable amount of repetitive DNA.The authors dedicate this paper to Professor Hans Bauer, on the occasion of his 80th birthday  相似文献   

7.
Background: Structural studies of fixed cells have revealed that interphase chromosomes are highly organized into specific arrangements in the nucleus, and have led to a picture of the nucleus as a static structure with immobile chromosomes held in fixed positions, an impression apparently confirmed by recent photobleaching studies. Functional studies of chromosome behavior, however, suggest that many essential processes, such as recombination, require interphase chromosomes to move around within the nucleus.Results: To reconcile these contradictory views, we exploited methods for tagging specific chromosome sites in living cells of Saccharomyces cerevisiae with green fluorescent protein and in Drosophila melanogaster with fluorescently labeled topoisomerase ll. Combining these techniques with submicrometer single-particle tracking, we directly measured the motion of interphase chromatin, at high resolution and in three dimensions. We found that chromatin does indeed undergo significant diffusive motion within the nucleus, but this motion is constrained such that a given chromatin segment is free to move within only a limited subregion of the nucleus. Chromatin diffusion was found to be insensitive to metabolic inhibitors, suggesting that it results from classical Brownian motion rather than from active motility. Nocodazole greatly reduced chromatin confinement, suggesting a role for the cytoskeleton in the maintenance of nuclear architecture.Conclusions: We conclude that chromatin is free to undergo substantial Brownian motion, but that a given chromatin segment is confined to a subregion of the nucleus. This constrained diffusion is consistent with a highly defined nuclear architecture, but also allows enough motion for processes requiring chromosome motility to take place. These results lead to a model for the regulation of chromosome interactions by nuclear architecture.  相似文献   

8.
以同步化培养的多头绒泡菌(Physarum poldycephalum Schw.)原生质团为材料,应用整体银染技术,电镜下研究了核仁在细胞周期中的超微结构变化。结果变化:核仁成熟时比较大,位于细胞核中央,核仁内可区分出纤维中心、密集纤维成分和颗粒成分等。前期时,核仁向边缘移动,前期末在近核膜处解体,解体的核仁物质主要呈团块状散开。中期时,解体的核仁物质位于细胞核中央染色体区域的周围,染色体上没有特异的银染区域,染色体周边也看不到银染的“鞘”状结构,但在染色体中可见一些散在的银染大颗粒。末期时,核仁物质与染色体一起到达两极,在子细胞核中与正在解集缩的染色质共存一起,以后核仁物质逐渐汇合并与染色质分开。大约在有丝分裂结束120min后,在细胞核中形成一候 中央位置的大核仁,结果提示,低等真核生物的核仁结构和周期变化与高等真核生物的不完全相同。  相似文献   

9.
The dynamic changes of nucleolar ultrastructure in the cell cycle of Physarum polycephalum Schw. were studied by an en bloc silver-staining method. The results showed that the nucleolus was large in size and situated in the center of the nucleus in late G2-phase, and the fibrillar centers, dense fibrillar components and granular components could be observed in the nucleolus. During prophase, the nucleolus moved towards the periphery of the nucleus and in late prophase disintegrated near the nuclear envelope. In metaphase, the disintegrated nucleolar components were dispersed in masses and located at the periphery of the chromosomal region of the nucleus. No specifically silver-stained area and argentophilic protein sheath were observed on the chromosomes, but there were some big dispersed silver particles within the chromosomes. During telophase the nucleolar components moved towards the two poles along with the chromosomes and co-existed with the decondensing chromatin in daughter nuclei. The nucleolar components then gradually converged with one another and separated from the chromatin. A big nucleolus was formed in the nucleus about 120 min after the completion of mitosis.  相似文献   

10.
Abstract

The compositional properties of the human genome have been extensively studied. These analyses focused mainly in isochores. With the availability of the human genome and several molecular techniques, new studies were performed, showing that nucleotide composition is related to three processes: gene expression, replication and recombination. Nevertheless, these studies usually focused on regions at the sub-chromosomal level. Here we study the compositional differences among chromosomes, considering structural and functional aspects using the chromosomes as the units of analysis. We show that: i) chromosomes are compositionally consistent units; ii) there exists a correlation between their GC content and size and location within the nucleus, and iii) the three processes mentioned above are linked to compositional properties at the chromosomal level. These results support the existence of a link between composition and spatial/structural/functional features of entire chromosomes. The Evolutionary mechanisms and forces underlying these patterns remain open questions.  相似文献   

11.
Size-dependent positioning of human chromosomes in interphase nuclei   总被引:15,自引:0,他引:15       下载免费PDF全文
By using a fluorescence in situ hybridization technique we revealed that for nine different q-arm telomere markers the positioning of chromosomes in human G(1) interphase nuclei was chromosome size-dependent. The q-arm telomeres of large chromosomes are more peripherally located than telomeres on small chromosomes. This highly organized arrangement of chromatin within the human nucleus was discovered by determining the x and y coordinates of the hybridization sites and calculating the root-mean-square radial distance to the nuclear centers in human fibroblasts. We demonstrate here that global organization within the G(1) interphase nucleus is affected by one of the most fundamental physical quantities-chromosome size or mass-and propose two biophysical models, a volume exclusion model and a mitotic preset model, to explain our finding.  相似文献   

12.
The pattern of distribution of telomeric DNA (TTAGGG), 28S rDNA, and 5S rDNA has been studied using fluorescence in situ hybridization (FISH) and primed in situ labelling during spermatogenesis and sperm formation in the filiform spermatozoa of two species of planarians, Dendrocoelum lacteum and Polycelis tenuis (Turbellaria, Plathelminthes). In both species, the positions of FISH signals found with each probe sequence are constant from cell to cell in the nuclei of mature sperm. Chromosome regions containing 5S and 28S rDNA genes are gathered in distinct bundles of spiral form. In early spermatids with roundish nuclei, the sites of a given sequence on different chromosomes remain separate. Centromeres (marked by 5S rDNA) gather into a single cluster in the central region of the slightly elongated sperm nucleus. During spermatid maturation, this cluster migrates to the distal pole of the nucleus. In Polycelis, telomeric sites gather into three distinct clusters at both ends and in the middle of the moderately elongated nucleus. These clusters retain their relative positions as the spermatid matures. All the chromosome ends bearing 28S rDNA gather only into the proximal cluster. Our data suggest that structures in the nucleus selectively recognise chromosome regions containing specific DNA sequences, which helps these regions to find their regular places in the mature sperm nucleus and causes clustering of the sites of these sequences located on different chromosomes. This hypothesis is supported by observations on elongated sperm of other animals in which a correlation exists between ordered arrangement of chromosomes in the mature sperm nucleus and clustering of sites of the same sequence from different chromosomes during spermiogenesis. Received: 15 December 1997; in revised form: 24 March 1998 / Accepted: 14 April 1998  相似文献   

13.
Studies on Chenopodium chromosomes are scarce and restricted mainly to chromosome number estimation. To extend our knowledge on karyotype structure of the genus, the organization of 5S and 35S rRNA genes in Chenopodium chromosomes was studied. The rDNA sites were predominantly located at chromosomal termini, except in a few species where 5S rDNA sites were interstitial. The majority of the diploid species possessed one pair each of 35S and 5S rDNA sites located on separate chromosomes. Slightly higher diversity in rDNA site number was observed in polyploid accessions. One or two pairs of 35S rDNA sites were observed in tetraploids and hexaploids. Tetraploid species had two, four or six sites and hexaploid species had six or eight sites of 5S rDNA, respectively. These data indicate that, in the evolution of some polyploid species, there has been a tendency to reduce the number of rDNA sites. Additionally, polymorphism in rDNA site number was observed. Possible mechanisms of rDNA locus evolution are discussed. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

14.
Mitosis in Boergesenia forbesii (Harvey) Feldman was studied by immunofluorescence microscopy using anti-β–tubulin, anti-γ–tubulin, and anti-centrin antibodies. In the interphase nucleus, one, two, or rarely three anti-centrin staining spots were located around the nucleus, indicating the existence of centrioles. Microtubules (MTs) elongated randomly from the circumference of the nuclear envelope, but distinct microtubule organizing centers could not be observed. In prophase, MTs located around the interphase nuclei became fragmented and eventually disappeared. Instead, numerous MTs elongated along the nuclear envelope from the discrete anti-centrin staining spots. Anti-centrin staining spots duplicated and migrated to the two mitotic poles. γ–Tubulin was not detected at the centrioles during interphase but began to localize there from prophase onward. The mitotic spindle in B. forbesii was a typical closed type, the nuclear envelope remaining intact during nuclear division. From late prophase, accompanying the chromosome condensation, spindle MTs could be observed within the nuclear envelope. A bipolar mitotic spindle was formed at metaphase, when the most intense staining of γ-tubulin around the centrioles could also be seen. Both spindle MT poles were formed inside the nuclear envelope, independent of the position of the centrioles outside. In early anaphase, MTs between separating daughter chromosomes were not detected. Afterward, characteristic interzonal spindle MTs developed and separated both sets of the daughter chromosomes. From late anaphase to telophase, γ-tubulin could not be detected around the centrioles and MT radiation from the centrioles became diminished at both poles. γ-Tubulin was not detected at the ends of the interzonal spindle fibers. When MTs were depolymerized with amiprophos methyl during mitosis, γ-tubulin localization around the centrioles was clearly confirmed. Moreover, an influx of tubulin molecules into the nucleus for the mitotic spindle occurred at chromosome condensation in mitosis.  相似文献   

15.
The 17s-5.8s-25s ribosomal RNA gene (rDNA) loci in Oryza spp. were identified by the fluorescence in-situ hybridization (FISH) method. The rDNA loci were located on one-to-three chromosomes (two-to-six sites) within the eight diploid Oryza spp. One of the rDNA loci gave the weakest hybridization signal. This locus is reported for the first time in the genus Oryza. The chromosomes containing the rDNA loci were determined to be numbers 9, 10 and 11 in descending order of the copy number of rDNA. The application of image analysis methods, after slide preparation treatments (post-treatments), and the use of a thermal cycler, greatly improved the reproducibility of the results. The evolutionary significance of the variability of rDNA loci among the Oryza spp. is discussed.  相似文献   

16.
 We describe the use of wheat microsatellites for the discrimination of Aegilops markgrafii chromosomes. Twenty out of eighty eight wheat microsatellites (WMS) tested were able to distinguish Triticum aestivum-Ae. markgrafii addition lines. Six, three, three, one and six of 18 WMS can be used as markers for single Ae. markgrafii chromosomes B, C, D, F and G, respectively. Addition line A is not available but additional bands, appearing only in Ae. markgrafii and the T. aestivum-Ae. markgrafii amphiploid and not in any of the available addition lines, indicate that three WMS detect markers for Ae. markgrafii chromosomes A. Addition line E could not be detected by any of the WMS markers applied, although the 20 WMS represented all the homologous groups of wheat. All three WMS located on the short arm of group-2 chromosomes were located on Ae. markgrafii chromosome B; three of four WMS, located on the long arm of wheat group-2 chromosomes, were specific to Ae. markgrafii chromosome G and three of four WMS, specific to group-5 chromosomes, were markers for Ae. markgrafii chromosome C, indicating the homoeology of these wheat chromosome arms with the respective Ae. markgrafii chromosomes. Received: 29 May 1997 / Accepted: 10 September 1997  相似文献   

17.
The karyomorphology of Podophyllum hexandrum Royle (2n=2x=12) is described for the first time. The haploid set comprises one metacentric, three sub-metacentric and two acrocentric chromosomes. Metacentrics are the longest and acrocentrics the smallest in the complement. Secondary constrictions are located in the short arm of two meta-/submetacentrics and in the long arm of the two acrocentric chromosomes. The number of NORs is in agreement with the number of nucleoli organized per root tip nucleus.  相似文献   

18.
Male meiosis was studied in a population of Acanonicus hahni (Stål), and nine of the sixteen individuals analyzed showed desynapsis. The frequency of univalents varied from one to seven percent in eight of them, while in the ninth the percentage of cells with univalents was higher (12%). The univalents auto-orientate at metaphase I in the center of the ring formed by autosomal bivalents and divide equationally at anaphase I; at metaphase II they show touch-and-go pairing, and lie in the center of the ring of autosomes.A desynaptic origin of the univalents is proposed, and the arrangement of the chromosomes in the first and second metaphase plate in the normal and desynaptic individuals is compared and discussed. The meiotic characteristics of these desynaptic individuals are also compared with those described in other insects with holocentric and monocentric chromosomes. It is suggested that any achiasmatic chromosome, whether a univalent, m or sex chromosome, will induce the formation of a ring and with some or all of them lying in its centre.  相似文献   

19.
Summary Ornithogalum virens is a bicellular pollen species. In mature pollen, the generative nucleus is at advanced prophase. Mitosis of the generative cell is resumed just after pollen rehydration and prometaphase occurs within 10 min of germination. Prometaphase is manifested by nuclear envelope breakdown and the appearance of spindle microtubules in the nucleoplasm region. At this stage the number of cytoplasmic microtubules located in the generative cell periphery appears to decrease. Endoplasmic reticulum-like cisternae originating from the nuclear envelope tend to be spaced around the chromosomes, outside the area of the forming mitotic spindle. Some also begin to penetrate the spindle area. The results are discussed in terms of the generative cell cycle in bicellular pollen.  相似文献   

20.
In-situ hybridization to interphase nuclei and chromosomes of Arabidopsis thaliana (2n= 10) shows that there are four sites of rDNA in a diploid nucleus. The sites are located on chromosomes 2 and 4, and the strength of hybridization indicates that copy number is similar at both pairs of sites. Hybridization to trisomic line 4 revealed five hybridization sites. Silver staining of nucleoli demonstrates that all four loci can be active in diploid interphase nuclei. The tandemly repeated probe pAL1 hybridizes near to the centromeres of all five chromosome pairs. In diploid interphase nuclei, 10 sites of hybridization are detected, while 15 are seen in triploid nuclei. The sites of hybridization co-localize with the centromeric heterochromatin visualized by staining DNA with the fluorochrome DAPI. The results demonstrate that molecular cytogenetics can be applied to A. thaliana and high resolution physical chromosome maps can be generated. Both probes may be useful for interphase cytogenetics, where they enable chromosome number and aneuploidy to be examined in tissues without divisions. The physical localization of these hybridization sites provides a starting point for linking RFLP and physical chromosome maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号