首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Acyl Carrier Protein (ACP) has a single reactive sulfhydryl necessary for function in covalently binding nascent fatty acids during biosynthesis. In Plasmodium falciparum, the causative agent of the most lethal form of malaria, fatty acid biosynthesis occurs in the apicoplast organelle during the liver stage of the parasite life cycle. During the blood stage, fatty acid biosynthesis is inactive and the redox state of the apicoplast has not been determined. We solved the crystal structure of ACP from P. falciparum in reduced and disulfide‐linked forms, and observe the surprising result that the disulfide in the PfACP cross‐linked dimer is sequestered from bulk solvent in a tight molecular interface. We assessed solvent accessibility of the disulfide with small molecule reducing agents and found that the disulfide is protected from BME but less so for other common reducing agents. We examined cultured P. falciparum parasites to determine which form of PfACP is prevalent during the blood stages. We readily detected monomeric PfACP in parasite lysate, but do not observe the disulfide‐linked form, even under conditions of oxidative stress. To demonstrate that PfACP contains a free sulfhydryl and is not acylated or in the apo state, we treated blood stage parasites with the disulfide forming reagent diamide. We found that the effects of diamide are reversed with reducing agent. Together, these results suggest that the apicoplast is a reducing compartment, as suggested by models of P. falciparum metabolism, and that PfACP is maintained in a reduced state during blood stage growth. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Malaria, caused by Plasmodium falciparum and related parasites, is responsible for millions of deaths each year, mainly from complications arising from the blood stages of its life cycle. Macrophage migration inhibitory factor (MIF), a protein expressed by the parasite during these stages, has been characterized in mammals as a cytokine involved in a broad spectrum of immune responses. It also possesses two catalytic activities, a tautomerase and an oxidoreductase, though the physiological significance of neither reaction is known. Here, we have determined the crystal structure of MIF from two malaria parasites, Plasmodium falciparum and Plasmodium berghei at 2.2 Å and 1.8 Å, respectively. The structures have an α/β fold and each reveals a trimer, in agreement with the results of analytical ultracentrifugation. We observed open and closed active sites, these being distinguished by movements of proline‐1, the catalytic base in the tautomerase reaction. These states correlate with the covalent modification of cysteine 2 to form a mercaptoethanol adduct, an observation confirmed by mass spectrometry. The Plasmodium MIFs have a different pattern of conserved cysteine residues to the mammalian MIFs and the side chain of Cys58, which is implicated in the oxidoreductase activity, is buried. This observation and the evident redox reactivity of Cys2 suggest quite different oxidoreductase characteristics. Finally, we show in pull‐down assays that Plasmodium MIF binds to the cell surface receptor CD74, a known mammalian MIF receptor implying that parasite MIF has the ability to interfere with, or modulate, host MIF activity through a competitive binding mechanism.  相似文献   

3.
Abstract

The malaria parasite Plasmodium falciparum is still a major threat to human health in the non-industrialised world mainly due to the increasing incidence of drug resistance. Therefore, there is an urgent need to identify and validate new potential drug targets in the parasite's metabolism that are suitable for the design of new anti-malarial drugs. It is known that infection with P. falciparum leads to increased oxidative stress in red blood cells, implying that the parasite requires efficient antioxidant and redox systems to prevent damage caused by reactive oxygen species. In recent years, it has been shown that P. falciparum possess functional thioredoxin and glutathione systems. Using genetic and chemical tools, it was demonstrated that thioredoxin reductase, the first step of the thioredoxin redox cycle, and γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step of glutathione synthesis, are essential for parasite survival. Indeed, the mRNA levels of γ-GCS are elevated in parasites that are oxidatively stressed, indicating that glutathione plays an important antioxidant role in P. falciparum. In addition to this antioxidant function, glutathione is important for detoxification processes and is possibly involved in the development of resistance against drugs such as chloroquine.  相似文献   

4.
Summary— During its erythrocytic life cycle Plasmodium falciparum exchanges compounds with host cells through phagocytosis and exocytosis. In eucaryotic cells, small GTP-binding proteins of the Ras superfamily appear to be involved in different steps of membrane trafficking and in intracellular signals. In this paper, we investigate the Rab4, Rab6 and Ras-related proteins in P falciparum infected red cells. We report that P falciparum Rab and Ras-related proteins could be distinguished from their counterparts by iso-electrofocusing and immunoblotting. The localization of P falciparum Rab 4 and Rab 6 was studied by immunogold electron microscopy on ultrathin frozen sections of infected red blood cells. Rab4 parasite-relate protein was found associated with the membranes of early endosome-like structures near the parasite plasma membrane. Rab6-related protein was associated with the Golgi/trans Golgi network, as already suggested by immunofluorescence microscopy studies and Ras-related protein was cytoplasmic and plasma membrane-associated. These results are in accordance with their mammalian counterparts and support the implication of Rab-related proteins in vesicular trafficking in Plasmodium.  相似文献   

5.
Background information. The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo‐erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. Results. In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo‐erythrocytic schizogony in vitro, leading to impaired parasite maturation. Conclusions. Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red‐blood‐cell‐infective merozoites.  相似文献   

6.
7.
Plasmodium falciparum encounters frequent environmental challenges during its life cycle which makes productive protein folding immensely challenging for its metastable proteome. To identify the important components of protein folding machinery involved in maintaining P. falciparum proteome, we performed a proteome‐wide phylogenetic profiling across various species. We found that except HSP110, the parasite lost all other cytosolic nucleotide exchange factors essential for regulating HSP70 which is the centrum of the protein folding network. Evolutionary and structural analysis shows that besides its canonical interaction with HSP70, PfHSP110 has acquired sequence insertions for additional dynamic interactions. Molecular co‐evolution profile depicts that the co‐evolving proteins of PfHSP110 belong to distinct pathways like genetic variation, DNA repair, fatty acid biosynthesis, protein modification/trafficking, molecular motions, and apoptosis. These proteins exhibit unique physiochemical properties like large size, high iso‐electric point, low solubility, and antigenicity, hence require PfHSP110 chaperoning to attain functional state. Co‐evolving protein interaction network suggests that PfHSP110 serves as an important hub to coordinate protein quality control, survival, and immune evasion pathways in the parasite. Overall, our findings highlight potential accessory roles of PfHSP110 that may provide survival advantage to the parasite during its lifecycle and febrile conditions. The data also open avenues for experimental validation of auxiliary functions of PfHSP110 and their exploration for design of better antimalarial strategies. Proteins 2015; 83:1513–1525. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA‐like protein, merozoite apical erythrocyte‐binding ligand (MAEBL). MAEBL‐deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.  相似文献   

9.
Aurora kinases are eukaryotic serine/threonine protein kinases that regulate key events associated with chromatin condensation, centrosome and spindle function and cytokinesis. Elucidating the roles of Aurora kinases in apicomplexan parasites is crucial to understand the cell cycle control during Plasmodium schizogony or Toxoplasma endodyogeny. Here, we report on the localization of two previously uncharacterized Toxoplasma Aurora‐related kinases (Ark2 and Ark3) in tachyzoites and of the uncharacterized Ark3 orthologue in Plasmodium falciparum erythrocytic stages. In Toxoplasma gondii, we show that TgArk2 and TgArk3 concentrate at specific sub‐cellular structures linked to parasite division: the mitotic spindle and intranuclear mitotic structures (TgArk2), and the outer core of the centrosome and the budding daughter cells cytoskeleton (TgArk3). By tagging the endogenous PfArk3 gene with the green fluorescent protein in live parasites, we show that PfArk3 protein expression peaks late in schizogony and localizes at the periphery of budding schizonts. Disruption of the TgArk2 gene reveals no essential function for tachyzoite propagation in vitro, which is surprising giving that the P. falciparum and P. berghei orthologues are essential for erythrocyte schizogony. In contrast, knock‐down of TgArk3 protein results in pronounced defects in parasite division and a major growth deficiency. TgArk3‐depleted parasites display several defects, such as reduced parasite growth rate, delayed egress and parasite duplication, defect in rosette formation, reduced parasite size and invasion efficiency and lack of virulence in mice. Our study provides new insights into cell cycle control in Toxoplasma and malaria parasites and highlights Aurora kinase 3 as potential drug target.  相似文献   

10.
Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood‐stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site‐specific recombination in P. falciparum, capable of excising loxP‐flanked sequences from a genomic locus with close to 100% efficiency within the time‐span of a single erythrocytic growth cycle. DiCre‐mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre‐expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood‐stage parasite genes.  相似文献   

11.
Summary Plasmodium falciparum is the causative agent of malaria tropica. Due to the increasing resistance towards the commonly used plasmodicidal drugs there is an urgent need to identify and assess new targets for the chemotherapeutic intervention of parasite development in the human host. It is established thatP. falciparum-infected erythrocytes are vulnerable to oxidative stress, and therefore efficient antioxidative systems are required to ensure parasite development within the host cell. The thioredoxin and glutathione redox systems represent two powerful means to detoxify reactive oxygen species and this article summarizes some of the recent work which has led to a better understanding of these systems in the parasite and will help to assess them as potential targets for the development of new chemotherapeutics of malaria.Abbreviation BSO L-buthionine-(S,R)-sulphoximdne  相似文献   

12.
Plasmodium falciparum, the most important etiological agent of human malaria, is endowed with a highly complex cell cycle that is essential for its successful replication within the host. A number of evidence suggest that changes in parasite Ca2+ levels occur during the intracellular cycle of the parasites and play a role in modulating its functions within the RBC. However, the molecular identification of Plasmodium receptors linked with calcium signalling and the causal relationship between Ca2+ increases and parasite functions are still largely mysterious. We here describe that increases in P. falciparum Ca2+ levels, induced by extracellular ATP, modulate parasite invasion. In particular, we show that addition of ATP leads to an increase of cytosolic Ca2+ in trophozoites and segmented schizonts. Addition of the compounds KN62 and Ip5I on parasites blocked the ATP-induced rise in [Ca2+]c. Besides, the compounds or hydrolysis of ATP with apyrase added in culture drastically reduce RBC infection by parasites, suggesting strongly a role of extracellular ATP during RBC invasion. The use of purinoceptor antagonists Ip5I and KN62 in this study suggests the presence of putative purinoceptor in P. falciparum. In conclusion, we have demonstrated that increases in [Ca2+]c in the malarial parasite P. falciparum by ATP leads to the modulation of its invasion of red blood cells.  相似文献   

13.
《Trends in parasitology》2023,39(3):200-211
During its life cycle, the human malaria parasite Plasmodium falciparum is subjected to elevated levels of oxidative stress that cause damage to membrane lipids, a process referred to as lipid peroxidation. Control and repair of lipid peroxidation is critical for survival of P. falciparum. Here, we present an introduction into lipid peroxidation and review the current knowledge about the control and repair of the damage caused by lipid peroxidation in P. falciparum blood stages. We also review the recent identification of host peroxiredoxin 6 (PRDX6), as a key lipid-peroxidation-repair enzyme in P. falciparum blood stages. Such critical host factors provide novel targets for development of drugs against malaria.  相似文献   

14.
15.
Plasmodium falciparum is a protozoan parasite that is responsible for the most pathogenic form of human malaria. The particular virulence of this parasite derives from its ability to develop within the erythrocytes of its host and to subvert their function. The intraerythrocytic parasite devours haemoglobin, and remodels its host cell to cause adhesion to blood vessel walls. Ultrastructural studies of P. falciparum have played a major role in defining its cell architecture and in resolving cell biology controversies. Here we review some of the early studies and describe some recent developments in electron microscopy techniques that have revealed information about the organization of the parasite in the blood stage of development. We present images of P. falciparum at different stages of the life cycle and highlight some of the plasmodium-specific organelles, the haemoglobin digestive apparatus and the membrane structures that are elaborated in the host cell cytoplasm to traffic virulence proteins to the erythrocyte surface. We describe methods for whole cell ultrastructural imaging that can provide three-dimensional views of intraerythrocytic development.  相似文献   

16.
Plasmodium falciparum lipoate protein ligase 1 (PfLipL1) is an ATP‐dependent ligase that belongs to the biotin/lipoate A/B protein ligase family (PFAM PF03099). PfLipL1 is the only known canonical lipoate ligase in Pf and functions as a redox switch between two lipoylation routes in the parasite mitochondrion. Here, we report the crystal structure of a deletion construct of PfLipL1 (PfLipL1Δ243‐279) bound to lipoate, and validate the lipoylation activity of this construct in both an in vitro lipoylation assay and a cell‐based lipoylation assay. This characterization represents the first step in understanding the redox dependence of the lipoylation mechanism in malaria parasites. Proteins 2017; 85:1777–1783. © 2017 Wiley Periodicals, Inc.  相似文献   

17.
Levels of superoxide dismutase (SOD) activity and its properties in Plasmodium falciparum-infected erythrocytes, isolated parasites, and noninfected erythrocytes were studied. A higher specific activity was found in P. falciparum-infected erythrocytes compared to noninfected erythrocytes, resulting from the lower protein content of infected cells and not enzyme synthesis by the parasite, as the superoxide dismutase activity expressed per number of cells was decreased. Superoxide dismutase from noninfected erythrocytes and isolated P. falciparum parasites showed similar sensitivities to various inhibitors and had identical molecular weights and electrophoretic mobilities. These results support the hypothesis of uptake and use of the erythrocytic SOD enzyme by the parasite as a possible mechanism of defense against oxidative stress.  相似文献   

18.
The emergence of drug‐resistant malaria parasites is the major threat to effective malaria control, prompting a search for novel compounds with mechanisms of action that are different from the traditionally used drugs. The immunosuppressive drug FK506 shows an antimalarial activity. The mechanism of the drug action involves the molecular interaction with the parasite target proteins PfFKBP35 and PvFKBP35, which are novel FK506 binding protein family (FKBP) members from Plasmodium falciparum and Plasmodium vivax, respectively. Currently, molecular mechanisms of the FKBP family proteins in the parasites still remain elusive. To understand their functions, here we have determined the structures of the FK506 binding domain of Plasmodium vivax (PvFKBD) in unliganded form by NMR spectroscopy and in complex with FK506 by X‐ray crystallography. We found out that PvFKBP35 exhibits a canonical FKBD fold and shares kinetic profiles similar to those of PfFKBP35, the homologous protein in P. falciparum, indicating that the parasite FKBP family members play similar biological roles in their life cycles. Despite the similarity, differences were observed in the ligand binding modes between PvFKBD and HsFKBP12, a human FKBP homolog, which could provide insightful information into designing selective antimalarial drug against the parasites.  相似文献   

19.
Plasmodium falciparum is the most virulent causative agent of malaria in man accounting for 80% of all malarial infections and 90% of the one million annual deaths attributed to malaria. P. falciparum is a unicellular, Apicomplexan parasite, that spends part of its lifecycle in the mosquito and part in man and it has evolved a special form of motility that enables it to burrow into animal cells, a process termed “host cell invasion”. The acute, life threatening, phase of malarial infection arises when the merozoite form of the parasite undergoes multiple cycles of red blood cell invasion and rapid proliferation. Here, we discuss the molecular machinery that enables malarial parasites to invade red blood cells and we focus particularly on the ATP-driven acto-myosin motor that powers invasion.  相似文献   

20.
Plasmodium falciparum is the causative agent of the most dangerous form of malaria in humans. It has been reported that the P. falciparum genome encodes for a single ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), an enzyme that hydrolyzes extracellular tri- and di-phosphate nucleotides. The E-NTPDases are known for participating in invasion and as a virulence factor in many pathogenic protozoa. Despite its presence in the parasite genome, currently, no information exists about the activity of this predicted protein. Here, we show for the first time that P. falciparum E-NTPDase is relevant for parasite lifecycle as inhibition of this enzyme impairs the development of P. falciparum within red blood cells (RBCs). ATPase activity could be detected in rings, trophozoites, and schizonts, as well as qRT-PCR, confirming that E-NTPDase is expressed throughout the intraerythrocytic cycle. In addition, transfection of a construct which expresses approximately the first 500 bp of an E-NTPDase-GFP chimera shows that E-NTPDase co-localizes with the endoplasmic reticulum (ER) in the early stages and with the digestive vacuole (DV) in the late stages of P. falciparum intraerythrocytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号