首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis of a blunted chronotropic response of cardiac beta-adrenergic receptors in altitude hypoxia was tested in nine subjects at sea level (SL) by infusion of isoproterenol. Observations were made at SL, in acute hypoxia (2 days at 4,350 m, condition H1), in more prolonged hypoxia [13 days between 850 and 4,800 m, condition H2] and in chronic hypoxia [21 days at 4,800 m, condition H3]. Resting heart rate was higher in all hypoxic conditions. Resting norepinephrine concentrations were found to be significantly higher in conditions H2 (1.64 +/- 0.59) and H3 (1.74 +/- 0.76) than at SL (0.77 +/- 0.18 ng/ml). Isoproterenol, diluted in saline, was infused at increasing doses of 0.0, 0.02, 0.04, and 0.06 micrograms.kg-1.min-1. For the highest dose, there was a significantly smaller increase in heart rate in conditions H1 (35 +/- 9), H2 (33 +/- 11), and H3 (31 +/- 11) than at SL (45 +/- 8 min-1). The increase in pulse (systolic/diastolic) pressure, considered as the vascular response to isoproterenol infusion, was smaller in condition H3 (29 +/- 16) than at SL (51 +/- 24 mmHg). There was a significant increase in the dose of isoproterenol required to increase heart rate by 25 min-1 and decrease in slope of heart rate increase vs. log(dose) relationship in conditions H2 and H3. Thus an hypoxia-related attenuated response of beta-adrenergic receptors to exogenous stimulation was found in humans.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Many avian species exhibit an extraordinary ability to exercise under hypoxic condition compared with mammals, and more efficient pulmonary O(2) transport has been hypothesized to contribute to this avian advantage. We studied six emus (Dromaius novaehollandaie, 4-6 mo old, 25-40 kg) at rest and during treadmill exercise in normoxia and hypoxia (inspired O(2) fraction approximately 0.13). The multiple inert gas elimination technique was used to measure ventilation-perfusion (V/Q) distribution of the lung and calculate cardiac output and parabronchial ventilation. In both normoxia and hypoxia, exercise increased arterial Po(2) and decreased arterial Pco(2), reflecting hyperventilation, whereas pH remained unchanged. The V/Q distribution was unimodal, with a log standard deviation of perfusion distribution = 0.60 +/- 0.06 at rest; this did not change significantly with either exercise or hypoxia. Intrapulmonary shunt was <1% of the cardiac output in all conditions. CO(2) elimination was enhanced by hypoxia and exercise, but O(2) exchange was not affected by exercise in normoxia or hypoxia. The stability of V/Q matching under conditions of hypoxia and exercise may be advantageous for birds flying at altitude.  相似文献   

3.
Acclimatization to hypoxia has minimal effect on maximal O2 uptake (Vo2 max). Prolonged hypoxia shows reductions in cardiac output (Q), maximal heart rate (HR-max), myocardial beta-adrenoceptor (beta-AR) density, and chronotropic response to isoproterenol. This study tested the hypothesis that exercise training (ET), which attenuates beta-AR downregulation, would increase HRmax and Q of acclimatization and result in higher Vo2 max. After 3 wk of ET, rats lived at an inspired Po2 of 70 Torr for 10 days (acclimatized trained rats) or remained in normoxia, while both groups continued to train in normoxia. Controls were sedentary acclimatized and nonacclimatized rats. All rats exercised maximally in normoxia and hypoxia (inspired Po2 of 70 Torr). Myocardial beta-AR density and the chronotropic response to isoproterenol were reduced, and myocardial cholinergic receptor density was increased after acclimatization; all of these receptor changes were reversed by ET. Normoxic Vo2 max (in ml.min-1.kg-1) was 95.8 +/- 1.0 in acclimatized trained (n = 6), 87.7 +/- 1.7 in nonacclimatized trained (P < 0.05, n = 6), 74.2 +/- 1.4 in acclimatized sedentary (n = 6, P < 0.05), and 72.5 +/- 1.2 in nonacclimatized sedentary (n = 8; P > 0.05 acclimatized sedentary vs. nonacclimatized sedentary). A similar distribution of Vo2 max values occurred in hypoxic exercise. Q was highest in trained acclimatized and nonacclimatized, intermediate in nonacclimatized sedentary, and lowest in acclimatized sedentary groups. ET preserved Q in acclimatized rats thanks to maintenance of HRmax as well as of maximal stroke volume. Q preservation, coupled with a higher arterial O2 content, resulted in the acclimatized trained rats having the highest convective O2 transport and Vo2 max. These results show that ET attenuates beta-AR downregulation and preserves Q and Vo2 max after acclimatization, and support the idea that beta-AR downregulation partially contributes to the limitation of Vo2 max after acclimatization in rats.  相似文献   

4.
The purpose of this study was to examine the effects of exercise on extravascular lung water as it may relate to pulmonary gas exchange. Ten male humans underwent measures of maximal oxygen uptake (Vo2 max) in two conditions: normoxia (N) and normobaric hypoxia of 15% O2 (H). Lung density was measured by quantified MRI before and 48.0 +/- 7.4 and 100.7 +/- 15.1 min following 60 min of cycling exercise in N (intensity = 61.6 +/- 9.5% Vo2 max) and 55.5 +/- 9.8 and 104.3 +/- 9.1 min following 60 min cycling exercise in H (intensity = 65.4 +/- 7.1% hypoxic Vo2 max), where Vo2 max = 65.0 +/- 7.5 ml x kg(-1) x min(-1) (N) and 54.1 +/- 7.0 ml x kg(-1) x min(-1) (H). Two subjects demonstrated mild exercise-induced arterial hypoxemia (EIAH) [minimum arterial oxygen saturation (SaO2 min) = 94.5% and 93.8%], and seven subjects demonstrated moderate EIAH (SaO2 min = 91.4 +/- 1.1%) as measured noninvasively during the Vo2 max test in N. Mean lung densities, measured once preexercise and twice postexercise, were 0.177 +/- 0.019, 0.181 +/- 0.019, and 0.173 +/- 0.019 g/ml (N) and 0.178 +/- 0.021, 0.174 +/- 0.022, and 0.176 +/- 0.019 g/ml (H), respectively. No significant differences (P > 0.05) were found in lung density following exercise in either condition or between conditions. Transient interstitial pulmonary edema did not occur following sustained steady-state cycling exercise in N or H, indicating that transient edema does not result from pulmonary capillary leakage during sustained submaximal exercise.  相似文献   

5.
Arterial O2 saturation (Sao2) decreases in hypoxia in the transition from rest to moderate exercise, but it is unknown whether other several weeks at high altitude SaO2 in submaximal exercise follows the same time course and pattern as that of ventilatory acclimatization in resting subjects. Ventilatory acclimatization is essentially complete after approximately 1 wk at 4,300 m, such that improvement in submaximal exercise SaO2 would then require other mechanisms. On days 2, 8, and 22 on Pikes Peak (4,300 m), 6 male subjects performed prolonged steady-state cycle exercise at 79% maximal O2 uptake (VO2 max). Resting SaO2 rose from day 1 (78.4 +/- 1.6%) to day 8 (87.5 +/- 1.4%) and then did not increase further by day 20 (86.4 +/- 0.6%). During exercise, SaO2 values (mean of 5-, 15-, and 30-min measurements) were 72.7% (day 2), 78.6% (day 8), and 82.3% (day 22), meaning that all of the increase in resting SaO2 occurred from day 1 to day 8, but exercise SaO2 increased from day 2 to day 8 (5.9%) and then increased further from day 8 to day 22 (3.7%). On day 22, the exercise SaO2 was higher than on day 8 despite an unchanged ventilation and O2 consumption. The increased exercise SaO2 was accompanied by decreased CO2 production. The mechanisms responsible for the increased exercise SaO2 require further investigation.  相似文献   

6.
This study determined whether "living high-training low" (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8-10 h/day overnight in normobaric hypoxia (approximately 2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (DeltaVE/DeltaSp(O(2)), where VE is minute ventilation and Sp(O(2)) is blood O(2) saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal PCO(2) (PET(CO(2))) and VE were measured during room air breathing at rest. HVR (l. min(-1). %(-1)) was higher (P < 0.05) in LHTLc than in Con at N1 (0.56 +/- 0.32 vs. 0.28 +/- 0.16), N3 (0.69 +/- 0.30 vs. 0.36 +/- 0.24), N10 (0.79 +/- 0.36 vs. 0.34 +/- 0.14), N15 (1.00 +/- 0.38 vs. 0.36 +/- 0.23), and Post (0.79 +/- 0.37 vs. 0.36 +/- 0.26). HVR at N15 was higher (P < 0.05) in LHTLi (0.67 +/- 0.33) than in Con and in LHTLc than in LHTLi. PET(CO(2)) was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia (P < 0.05). No significant differences were observed for VE at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases PET(CO(2)) in normoxia, without change in VE. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.  相似文献   

7.
Augmented hypoxic ventilatory response in men at altitude.   总被引:9,自引:0,他引:9  
To test the hypothesis that the hypoxic ventilatory response (HVR) of an individual is a constant unaffected by acclimatization, isocapnic 5-min step HVR, as delta VI/delta SaO2 (l.min-1.%-1, where VI is inspired ventilation and SaO2 is arterial O2 saturation), was tested in six normal males at sea level (SL), after 1-5 days at 3,810-m altitude (AL1-3), and three times over 1 wk after altitude exposure (PAL1-3). Equal medullary central ventilatory drive was sought at both altitudes by testing HVR after greater than 15 min of hyperoxia to eliminate possible ambient hypoxic ventilatory depression (HVD), choosing for isocapnia a P'CO2 (end tidal) elevated sufficiently to drive hyperoxic VI to 140 ml.kg-1.min-1. Mean P'CO2 was 45.4 +/- 1.7 Torr at SL and 33.3 +/- 1.8 Torr on AL3, compared with the respective resting control end-tidal PCO2 of 42.3 +/- 2.0 and 30.8 +/- 2.6 Torr. SL HVR of 0.91 +/- 0.38 was unchanged on AL1 (30 +/- 18 h) at 1.04 +/- 0.37 but rose (P less than 0.05) to 1.27 +/- 0.57 on AL2 (3.2 +/- 0.8 days) and 1.46 +/- 0.59 on AL3 (4.8 +/- 0.4 days) and remained high on PAL1 at 1.44 +/- 0.54 and PAL2 at 1.37 +/- 0.78 but not on PAL3 (days 4-7). HVR was independent of test SaO2 (range 60-90%). Hyperoxic HCVR (CO2 response) was increased on AL3 and PAL1. Arterial pH at congruent to 65% SaO2 was 7.378 +/- 0.019 at SL, 7.44 +/- 0.018 on AL2, and 7.412 +/- 0.023 on AL3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The objectives of these experiments were 1) to describe the effect of maximum treadmill exercise on gas exchange, arterial blood gases, and arterial blood oxygenation in rats acclimated for 3 wk to simulated altitude (SA, barometric pressure 370-380 Torr) and 2) to determine the contribution of acid-base changes to the changes in arterial blood oxygenation of hypoxic exercise. Maximum O2 uptake (VO2max) was measured in four groups of rats: 1) normoxic controls run in normoxia (Nx), 2) normoxic controls run in acute hypoxia [AHx inspiratory PO2 (PIO2) approximately 70 Torr], 3) SA rats run in hypoxia (3WHx, PIO2 approximately 70 Torr), and 4) SA rats run in normoxia (ANx). VO2max (ml STPD.min-1.kg-1) was 70.8 +/- 0.9 in Nx, 46.4 +/- 1.9 in AHx, 52.6 +/- 1.1 in 3WHx, and 70.0 +/- 2.4 in ANx. Exercise resulted in acidosis, hypocapnia, and elevated blood lactate in all groups. Although blood lactate increased less in 3WHx and ANx, pH was the same or lower than in Nx and AHx, reflecting the low buffer capacity of SA. In AHx and 3WHx, arterial PO2 increased with exercise; however, O2 saturation of hemoglobin in arterial blood (SaO2) decreased. In vitro measurements of the Bohr shift suggest that SaO2 decreased as a result of a decrease in hemoglobin O2 affinity. The data indicate that several features of hypoxic exercise in this model are similar to those seen in humans, with the exception of the mechanism of decrease in SaO2, which, in humans, appears to be due to incomplete alveolar-capillary equilibration.  相似文献   

9.
Background: nocturnal sustained hypoxia during sleeping time has been reported in severe obesity, but no information regarding the cardiac molecular mechanism in the coexistence of nocturnal sustained hypoxia and obesity is available. This study evaluates whether the coexistence of nocturnal sustained hypoxia and obesity will increase cardiac Fas death receptor and mitochondrial-dependent apoptotic pathway. Methods: 32 lean and 32 obese 5- to 6-mo-old rats with or without nocturnal sustained hypoxia were studied and assigned to one of four subgroups: normoxia lean (NL), normoxia obese (NO), hypoxia lean (HL, 12% O(2) for 8 h and 21% O(2) 16 h/day, 1 wk), and hypoxia obese (HO). The heart weight index, tail cuff plethysmography, echocardiography, hematoxylin-eosin staining, TUNEL assays, Western blotting, and RT-PCR were performed. Results: systolic and diastolic blood pressures in HO were higher than those in NL, and fractional shortening in HO was reduced compared with others. The whole heart weight, the left ventricular weight, the abnormal myocardial architecture, and TUNEL-positive apoptotic cells, as well as the activity of cardiac Fas-dependent and mitochondrial-dependent apoptotic pathway, were significantly increased in obese group or nocturnal sustained hypoxia group and were further increased when obesity and nocturnal sustained hypoxia coexisted, the evidence for which is based on decreases in an anti-apoptotic protein Bcl2 level and Bid and increases in Fas, FADD, pro-apoptotic Bad, BNIP3, cytosolic cytochrome c, activated caspase-8, activated caspase-9, and activated caspase-3. Conclusions: The cardiac Fas receptor- and mitochondrial-dependent apoptotic pathways were more activated in obesity with coexistent nocturnal sustained hypoxia, which may represent one possible apoptotic mechanism for the development of heart failure in obesity with nocturnal sustained hypoxia.  相似文献   

10.
This study tested the hypothesis that the extent of the decrement in (.)Vo(2max) and the respiratory response seen during maximal exercise in moderate hypobaric hypoxia (H; simulated 2,500 m) is affected by the hypoxia ventilatory and hypercapnia ventilatory responses (HVR and HCVR, respectively). Twenty men (5 untrained subjects, 7 long distance runners, 8 middle distance runners) performed incremental exhaustive running tests in H and normobaric normoxia (N) condition. During the running test, (.)Vo(2), pulmonary ventilation (Ve) and arterial oxyhemoglobin saturation (Sa(O(2))) were measured, and in two ventilatory response tests performed during N, a rebreathing method was used to evaluate HVR and HCVR. Mean HVR and HCVR were 0.36 +/- 0.04 and 2.11 +/- 0.2 l.min(-1).mmHg(-1), respectively. HVR correlated significantly with the percent decrements in (.)Vo(2max) (%d(.)Vo(2max)), Sa(O(2)) [%dSa(O(2)) = (N-H).N(-1).100], and (.)Ve/(.)Vo(2) seen during H condition. By contrast, HCVR did not correlate with any of the variables tested. The increment in maximal Ve between H and N significantly correlated with %d(.)Vo(2max). Our findings suggest that O(2) chemosensitivity plays a significant role in determining the level of exercise hyperventilation during moderate hypoxia; thus, a higher O(2) chemosensitivity was associated with a smaller drop in (.)Vo(2max) and Sa(O(2)) under those conditions.  相似文献   

11.
This study tested the effects of inhaled nitric oxide [NO; 20 parts per million (ppm)] during normoxic and hypoxic (fraction of inspired O(2) = 14%) exercise on gas exchange in athletes with exercise-induced hypoxemia. Trained male cyclists (n = 7) performed two cycle tests to exhaustion to determine maximal O(2) consumption (VO(2 max)) and arterial oxyhemoglobin saturation (Sa(O(2)), Ohmeda Biox ear oximeter) under normoxic (VO(2 max) = 4.88 +/- 0.43 l/min and Sa(O(2)) = 90.2 +/- 0.9, means +/- SD) and hypoxic (VO(2 max) = 4.24 +/- 0.49 l/min and Sa(O(2)) = 75.5 +/- 4.5) conditions. On a third occasion, subjects performed four 5-min cycle tests, each separated by 1 h at their respective VO(2 max), under randomly assigned conditions: normoxia (N), normoxia + NO (N/NO), hypoxia (H), and hypoxia + NO (H/NO). Gas exchange, heart rate, and metabolic parameters were determined during each condition. Arterial blood was drawn at rest and at each minute of the 5-min test. Arterial PO(2) (Pa(O(2))), arterial PCO(2), and Sa(O(2)) were determined, and the alveolar-arterial difference for PO(2) (A-aDO(2)) was calculated. Measurements of Pa(O(2)) and Sa(O(2)) were significantly lower and A-aDO(2) was widened during exercise compared with rest for all conditions (P < 0.05). No significant differences were detected between N and N/NO or between H and H/NO for Pa(O(2)), Sa(O(2)) and A-aDO(2) (P > 0.05). We conclude that inhalation of 20 ppm NO during normoxic and hypoxic exercise has no effect on gas exchange in highly trained cyclists.  相似文献   

12.
Mechanism responsible for the enlargement of end-expiratory lung volume (EELV) induced by chronic hypoxia remains unclear. The fact that the increase in EELV persists after return to normoxia suggests involvement of morphological changes. Because hypoxia has been also shown to activate lung mast cells, we speculated that they could play in the mechanism increasing EELV similar role as in vessel remodeling in hypoxic pulmonary hypertension (HPH). We, therefore, tested an effect of mast cells degranulation blocker disodium cromoglycate (DSCG) on hypoxia induced EELV enlargement. Ventilatory parameters, EELV and right to left heart weight ratio (RV/LV+S) were measured in male Wistar rats. The experimental group (H+DSCG) was exposed to 3 weeks of normobaric hypoxia and treated with DSCG during the first four days of hypoxia, control group was exposed to hypoxia only (H), two others were kept in normoxia as non-treated (N) and treated (N+DSCG) groups. DSCG treatment significantly attenuated the EELV enlargement (H+DSCG = 6.1+/-0.8; H = 9.2+/-0.9; ml +/-SE) together with the increase in minute ventilation (H + DSCG = 190+/-8; H = 273 +/- 10; ml/min +/- SE) and RV/LV + S (H + DSCG = 0.39 +/- 0.03; H = 0.50 +/- 0.06).  相似文献   

13.
The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to improve multiple normal endothelial cell functions and inhibit vascular wall cell proliferation. We hypothesized that one such agent, simvastatin, would attenuate chronic hypoxic pulmonary hypertension. Male adult Sprague-Dawley rats were exposed (14 days) to normoxia (N), normoxia plus once-a-day administered simvastatin (20 mg/kg ip) (NS), hypoxia (10% inspired O2 fraction) (H), or hypoxia plus simvastatin (HS). Mean pulmonary artery pressure, measured in anesthetized, ventilated rats with an open-chest method, was reduced from 25 +/- 2 mmHg in H to 18 +/- 1 in HS (P < 0.001) but did not reach normoxic values (12 +/- 1 mmHg). Similarly, right ventricular/left ventricular plus interventricular septal weight was reduced from 0.53 +/- 0.02 in the H group to 0.36 +/- 0.02 in the HS group (P < 0.001). The increased hematocrit in H (0.65 +/- 0.02) was prevented by simvastatin treatment (0.51 +/- 0.01, P < 0.001). Hematocrit was similar in N versus NS. Alveolar vessel muscularization and medial thickening of vessels 50-200 microM in diameter induced by hypoxia were also significantly attenuated in the HS animals. Lung endothelial nitric oxide synthase (eNOS) protein expression in the HS group was less than H (P < 0.01) but was similar in N versus NS. We conclude that simvastatin treatment potently attenuates chronic hypoxic pulmonary hypertension and polycythemia in rats and inhibits vascular remodeling. Enhancement of lung eNOS expression does not appear to be involved in mediating this effect.  相似文献   

14.
低氧促进神经干细胞向多巴胺能神经元分化   总被引:2,自引:0,他引:2  
Zhao T  Zhang CP  Zhu LL  Jin B  Huang X  Fan M 《生理学报》2007,59(3):273-277
神经干细胞(neural stem cells,NSCs)作为具有多向分化潜能的神经前体细胞,被广泛应用于细胞移植等研究,而低氧不但调节干细胞的体外增殖,在干细胞分化中也具有重要的作用。本文着重探讨了低氧对NSCs分化的调节作用。采用Wistar孕大鼠(E13.5d),分离胚胎中脑NSCs,加入无血清DMEM/F12培养液(含20ng/mL EGF、20ng/mL bFGF、1% N2和B27),3~5d后传代,细胞培养至第三代进行诱导分化,分别在低氧(3%O2)和常氧(20%O2)条件下诱导分化3d,然后在常氧条件下分化成熟5~7d(DMEM/F12含1%FBS、N2和B27)后进行检测。Nestin、NeuN以及TH免疫组织化学鉴定NSCs;流式细胞术分析测定NSCs向TH阳性神经元方向的分化;高效液相色谱测定细胞培养上清液中多巴胺(dopamine,DA)含量。结果显示,分离培养的NSCs均为nestin阳性细胞;低氧可明显促进NSCs向神经元方向的分化;TH阳性神经元比例在常氧和低氧组分别为(10.25±1.03)%和(19.88±1.44)%。NSCs诱导分化7d后,低氧组细胞培养上清液中DA浓度明显增加,约为常氧组的2倍(P〈0.05,n=8)。上述结果表明,3%低氧可促进NSCs向神经元方向,特别是向DA能神经元方向分化。这为NSCs应用于临床治疗帕金森病提供了基础。  相似文献   

15.
Pulmonary diffusing capacities (DL) of NO and CO were determined simultaneously from rebreathing equilibration kinetics in anesthetized paralyzed supine dogs (mean body wt 20 kg) after denitrogenation (replacement of N2 by Ar). During rebreathing the dogs were ventilated in closed circuit with a gas mixture containing 0.06% NO, 0.06% 13C18O, and 1% He in Ar for 15 s, with tidal volume of 0.5 liter and frequency of 60/min. The partial pressures of NO, 13C18O, 16O18O, N2, Ar, CO2, and He in the trachea were continuously analyzed by mass spectrometry. Measurements were performed at various O2 levels characterized by the mean end-expired PO2 during rebreathing (PE'O2). In control conditions ("normoxia," PE'O2 = 67 +/- 8 Torr) the following mean +/- SD values were obtained (in ml.min-1.Torr-1): DLNO = 52.4 +/- 11.0 and DLCO = 15.4 +/- 2.9. In hypoxia (PE'O2 = 24 +/- 7 Torr) DLNO increased by 11 +/- 8% and DLCO by 19 +/- 10%, and in hyperoxia (PE'O2 = 390 +/- 26 Torr) DLNO decreased to 87 +/- 3% and DLCO to 56 +/- 8% with respect to values in normoxia. DLNO/DLCO of 3.24 +/- 0.06 (hypoxia), 3.38 +/- 0.31 (normoxia), and 5.54 +/- 1.04 (hyperoxia) were significantly higher than the NO/CO Krogh diffusion constant ratio (1.92) predicted for simple diffusion through aqueous layers. With increasing O2 uptake elicited by 2,4-dinitrophenol, DLNO and DLCO increased and DLNO/DLCO remained close to unchanged. The results suggest that the combined effects of diffusion and chemical reaction with hemoglobin limit alveolar-capillary transport of CO. If it is assumed that reaction kinetics of NO with hemoglobin (known to be extremely fast) are not rate limiting for NO uptake, the contribution of the slow chemical reaction with hemoglobin to the total CO uptake resistance (= 1/DLCO) was estimated to be 38% in hypoxia, 41% in normoxia, and 64% in hyperoxia. The various factors expected to restrict the validity of this analysis are discussed, in particular the effects of functional inhomogeneity.  相似文献   

16.
This study questioned the effect of living and training at moderate altitude on cardiac morphological and functional adaptations and tested the incidences of potential specific adaptations compared with aerobic sea level training on maximal left ventricular performance. Sea level-native rats were randomly assigned to N (living in normoxia), NT (living and training 5 days/wk for 5 wk in normoxia), CH (living in hypoxia, 2,800 m), and CHT (living and training 5 days/wk for 5 wk in hypoxia, 2,800 m) groups. Cardiac adaptations were evaluated throughout the study period by Doppler echocardiography. Maximal stroke volume (LV(SVmax)) was measured during volume overloading before and after the study period. Finally, at the end of the study period, passive pressure-volume relationships on isolated heart and cardiac weighing were obtained. Altitude training resulted in a specific left ventricular (LV) remodeling compared with NT, characterized by an increase in wall thicknesses without any alteration in internal dimensions. These morphological adaptations associated with hypoxia-induced alterations in pulmonary outflow and preload conditions led to a decrease in LV filling and subsequently no improvement in LV performance during resting physiological conditions in CHT compared with NT. Such a lack of improvement was confirmed during volume overloading that simulated maximal effort (LV(SVmax) pretest: NT = 0.58 +/- 0.05, CHT = 0.57 +/- 0.08 ml; posttest: NT = 0.72 +/- 0.06, CHT = 0.58 +/- 0.07 ml; NT vs. CHT in posttest session, P < 0.05). Maximal aerobic velocities increased to the same extent in NT and CHT rats despite marked polycythemia in the latter. The lack of LV(SVmax) improvement resulting from altitude training-induced cardiac morphological and functional adaptations could be responsible for this phenomenon.  相似文献   

17.
The objective of this study was to determine the effect of acute moderate hypoxia and rest duration on performance and on the accumulated oxygen deficit (AOD) in high-intensity intermittent efforts. After preliminary tests, 2 groups of nonacclimatized men (resident at 690 m above sea level) carried out 3 randomized protocols of effort (EXP1, EXP2, and EXP5) on 3 different days. These tests were performed at acute moderate altitude (2,320 m) by the hypoxia group (H) and in normoxia by the normoxia group (N). During EXP1 the subjects ran a maximum of five 400-m sprints (90% intensity) on a treadmill, with a pause between efforts of 1 minute. In EXP2 and EXP5 the same protocol was repeated, increasing the rest period between sprints to 2 and 5 minutes, respectively. Lactate accumulation and exhaled gases were measured during the tests. Accumulated oxygen deficit was calculated for each sprint. The total AOD (SigmaAOD) for each type of protocol was determined to be the sum of the corresponding accumulated deficits. The AODs were influenced by the length of rest period (p < 0.05) but not by H. The increase in recovery time between sprints increased the SigmaAOD (7,843 +/- 4,435 vs. 7,137 +/- 2,117 ml; 11,013 +/- 4,616 vs. 9,931 +/- 2,731 ml; 12,611 +/- 4,594 vs. 12,907 +/- 3,085 ml for H and N in EXP1, EXP2, and EXP5, respectively). The AOD increased in value when the same sprint was compared from EXP1 to EXP5 (p < 0.05). The results obtained show that exposure to acute moderate altitude does not affect the anaerobic pathway contribution in intermittent high-intensity exercises. Performance during this type of repeated effort is not altered during acute exposure to moderate altitude, which should be taken into account when an acclimatizing period is not possible.  相似文献   

18.
Pulmonary interstitial pressure was measured via micropuncture in anesthetized rabbits in normoxia and after breathing 12% O(2). In normoxia [arterial PO(2) = 88 +/- 2 (SD) mmHg], pulmonary arterial pressure and pulmonary interstitial pressure were 16 +/- 8 and -9.6 +/- 2 cmH(2)O, respectively. After 6 h of hypoxia (arterial PO(2) = 39 +/- 16 mm Hg), the corresponding values were 30+/-8 and 3.5+/-2.5 cm H(2)O (P<0.05). Pulmonary interstitial proteoglycan extractability, evaluated by hexuronate assay after 0.4 M guanidinium hydrochloride extraction, was 12.3, 32.4, and 60.6 microg/g wet tissue in normoxia and after 3 and 6 h of hypoxia, respectively, indicating a weakening of the noncovalent bonds linking proteoglycans to other extracellular matrix components. Gel filtration chromatography showed an increased fragmentation of chondroitin sulfate- and heparan sulfate-proteoglycans during hypoxic exposure, accounting for a loss of extracellular matrix native architecture and basement membrane structure. Gelatin zymography demonstrated increased amounts of the proteolytically activated form of gelatinase B (matrix metalloproteinase-9) after hypoxic exposure, providing evidence that the activation of proteinases may play a role in hypoxia-induced lung injury.  相似文献   

19.
Chronic perinatal intermittent hypoxia (IH) could have long-term cardiovascular effects by altering baroreflex function. To examine this hypothesis, we exposed rats (n = 6/group) for postnatal days 1-30 or prenatal embryonic days 5-21 to IH (8% ambient O2 for 90 s after 90 s of 21% of O2, 12 h/day) or to normoxia (control). Baroreflex sensitivity (BRS) and cardiac chronotropic responses were examined in anesthetized animals 3.5-5 mo later by infusing phenylephrine or sodium nitroprusside (6-12 microg/min iv, 1-2 min) during normoxia and after 18 min of acute IH (IHA). In controls after IHA, baroreflex gain was 42% (P < 0.05) less than during normoxia. BRS in the postnatal IH group during normoxia was approximately 50% less than in control rats and similar to controls after IHA. The heart rate response to phenylephrine in the IH group was also less than in controls (P < 0.05) and was not changed by IHA. BRS and heart rate responses in the prenatal IH group were similar to the normoxic control group. Vagal efferent projections to atrial ganglia neurons in rats after postnatal IH (n = 4) were examined by injecting tracer into the left nucleus ambiguous. After 35 days of postnatal IH, basket ending density was reduced by 17% (P < 0.001) and vagal axon varicose contacts by 56% (P < 0.001) compared with controls. We conclude that reduction of vagal efferent projections in cardiac ganglia could be a cause of long-term modifications in baroreflex function.  相似文献   

20.
We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing at this altitude. As expected, alveolar Po2 was reduced during AH but increased gradually during acclimatization (61 +/- 0.7, 69 +/- 0.9, and 72 +/- 1.4 mmHg in AH, 2W, and 8W, respectively), reaching values significantly higher than in Aymaras (67 +/- 0.6 mmHg). Arterial Po2 (PaO2) also decreased during exercise in AH but increased significantly with acclimatization (51 +/- 1.1, 58 +/- 1.7, and 62 +/- 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2 in lowlanders reached levels that were not different from those in high-altitude natives (66 +/- 1.2 mmHg). Arterial O2 saturation (SaO2) decreased during maximum exercise compared with rest in AH and after 2W and 8W: 73.3 +/- 1.4, 76.9 +/- 1.7, and 79.3 +/- 1.6%, respectively. After 8W, SaO2 in lowlanders was not significantly different from that in Aymaras (82.7 +/- 1%). An improved pulmonary gas exchange with acclimatization was evidenced by a decreased ventilatory equivalent of O2 after 8W: 59 +/- 4, 58 +/- 4, and 52 +/- 4 l x min x l O2(-1), respectively. The ventilatory equivalent of O2 reached levels not different from that of Aymaras (51 +/- 3 l x min x l O2(-1)). However, increases in exercise alveolar Po2 and PaO2 with acclimatization had no net effect on alveolar-arterial Po2 difference in lowlanders (10 +/- 1.3, 11 +/- 1.5, and 10 +/- 2.1 mmHg in AH, 2W, and 8W, respectively), which remained significantly higher than in Aymaras (1 +/- 1.4 mmHg). In conclusion, lowlanders substantially improve pulmonary gas exchange with acclimatization, but even acclimatization for 8 wk is insufficient to achieve levels reached by high-altitude natives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号