首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have identified Alpha-actinin from the electric organ of the Electrophorus electricus, L. It was analysed by polyacrylamide gel electrophoresis, and identified by immunoblotting. This protein was also found in a membrane fraction of the electric organ enriched with components of the cytoskeleton. Our results suggest that this protein might play a role either in the organization of the microfilaments or its interactions with the membrane to maintain a polarized electrocyte.  相似文献   

3.
Desmin, the muscle-specific intermediate filament protein was purified from the main electric organ of Electrophorus electricus. It is shown that pure desmin can be separated into 5 isoforms presenting different isoelectric points. These isoforms have similar molecular weight, react with an antibody directed against desmin and generate identical peptides after digestion with protease V8 from Staphylococcus aureus.  相似文献   

4.
A tyrosine-specific protein kinase immunologically related to pp60c-src, the cellular homolog of the Rous sarcoma virus-transforming protein, was expressed at elevated levels in the electric organ of the electric eel Electrophorus electricus. The electric organ kinase phosphorylated antibodies reactive with pp60c-src at tyrosine residues in immune complex protein kinase assays and was associated with electric organ membranes enriched in acetylcholine receptors. The protein recognized by anti-pp60c-src antibodies was phosphorylated in endogenous membrane phosphorylation reactions and was shown to have a relative molecular mass of 57 kDa by two-dimensional gel electrophoresis. In immune complex protein kinase assays the 57-kDa protein was phosphorylated at threonine by a distinct threonine kinase from the electric organ. The tyrosine kinase was purified 844-fold from electric organ membranes by chromatography on omega-aminohexyl agarose, phosphocellulose, and casein-Sepharose. Threonine kinase activity in immunoprecipitates was not observed in the tyrosine kinase fractions after the first step. Incubation of the casein Sepharose fraction with [gamma-32P]ATP-Mn2+ in solution resulted in phosphorylation of only the 57-kDa protein. Phosphorylation occurred solely at tyrosine, suggesting that the kinase is capable of autophosphorylation. The structural and functional properties of the 57-kDa electric organ kinase indicate that the 57-kDa electric organ protein is a member of the src subfamily of tyrosine kinases and is closely related to pp60c-src.  相似文献   

5.
The intermediate filament protein of the electric organ from the Electrophorus electricus L. was purified in DEAE-cellulose column after extraction with a Triton X-100 buffer and urea solubilization. The desmin was analysed by SDS-PAGE against desmin purified from chicken gizzard. Characterization of desmin from the electric eel was carried out by peptide mapping and immunoblotting methods.  相似文献   

6.
7.
8.
9.
10.
Two types of membrane particles, both binding α-[125I]bungarotoxin, were obtained from electric tissue of Electrophorus electricus. They were both separated from acetyleholinesterase-containing particle by centrifugation in sucrose density gradients. The differing properties of the bungarotoxin-binding particles suggest that they may represent synaptic and extrasynaptic membrane structures containing acetylcholine receptors.  相似文献   

11.
12.
A soluble fructose-1,6-bisphosphate aldolase enzyme has been purified 50.2-fold (2.36%) at the homogeneity from the electric organ of Electrophorus electricus by one step of DEAE-52 anion exchange chromatography followed by Superose-12 gel filtration-FPLC. Like other aldolase enzymes the E. electricus protein is a dimer with two identical subunits of 45 kDa. The N-terminal (20 residues) revealed a high homology with S. aurata (75%, goldfish), R. ratus and M. musculus (mouse, 80%) enzymes.  相似文献   

13.
To study the interaction of voltage-sensitive Na+-channels with membrane lipids, the phospholipid and fatty acid composition of highly purified membrane fragments from the remarkably differentiated plasma membrane of Electrophorus electricus has been analyzed. After density gradient fractionation and carrier free electrophoresis, fractions with up to 30 pmol tetrodotoxin binding/mg protein can be obtained, which may correspond to a 50% pure preparation of the extrasynaptic part of the excitable face. Phospholipid classes and cholesterol are separated by one-dimensional thin-layer chromatography in acidic and alkaline solvent systems. The following mean molar contents are found: 40% phosphatidylcholine, 23% phosphatidylserine, 30% phosphatidylethanolamine and 7% sphingomyelin. In a series of 11 animals, significant deviations from these mean values have been observed. The fatty acid composition of the phospholipids has been determined by gas chromatography. Phosphatidylcholine contains more than 50% 16:0, and about 20% unsaturated fatty acids in the C-18 group. Compared to other plasma membrane fractions, this phospholipid is the least differentiated. By contrast, phosphatidylethanolamine and phosphatidylserine show many characteristics in different membrane fractions, especially in their unsaturated components representing more than 50%. 22:6, as the major constituent in these fractions, accounts for a quarter to a third of all fatty acids in these fractions. 18:0 is the main saturated component in these two phospholipids with abundances of typically a quarter or less of all fatty acids. Knowledge of the lipid composition of these excitable membranes may help to conserve binding and structural properties when analyzing lipid-sensitive Na+-channels in vitro. It is also useful as a guideline for systematic reconstitution studies.  相似文献   

14.
The present investigation deals with the purification and the partial characterization of the soluble creatine kinase (CK) isoenzyme, isolated from the electric organ electrocyte of Electrophorus electricus (L.). Purification was performed by precipitation of the enzyme in the crude extract with ammonium sulfate (80%). The precipitate obtained was analyzed on an ion exchange column of diethylaminoethyl cellulose-52 (DEAE) followed by gel filtration on Superose 12 in a Fast Protein Liquid Chromatography (FPLC) system. Electrophoretic mobility of the active peak confirmed previous results identifying the hybrid isoenzyme MB in the electrocyte cytoplasm. Electrocyte CK is a dimeric enzyme with two identical subunits of approximately 40 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The sequence analysis of the N-terminal peptide (14 amino acids) of the 40 kDa subunit showed homology with other CK enzymes from electric fish (Torpedo) and human muscle type CK.  相似文献   

15.
16.
17.
18.
19.
A substantial international community of biologists have proposed the electric eel Electrophorus electricus (Teleostei: Gymnotiformes) as an important candidate for genome sequencing. In this study, the authors outline the unique advantages that a genome sequencing project of this species would offer society for developing new ways of producing and storing electricity. Over tens of millions of years, electric fish have evolved an exceptional capacity to generate a weak (millivolt) electric field in the water near their body from specialized muscle‐derived electric organs, and simultaneously, to sense changes in this field that occur when it interacts with foreign objects. This electric sense is used both to navigate and orient in murky tropical waters and to communicate with other members of the same species. Some species, such as the electric eel, have also evolved a strong voltage organ as a means of stunning prey. This organism, and a handful of others scattered worldwide, convert chemical energy from food directly into workable electric energy and could provide important clues on how this process could be manipulated for human benefit. Electric fishes have been used as models for the study of basic biological and behavioural mechanisms for more than 40 years by a large and growing research community. These fishes represent a rich source of experimental material in the areas of excitable membranes, neurochemistry, cellular differentiation, spinal cord regeneration, animal behaviour and the evolution of novel sensory and motor organs. Studies on electric fishes also have tremendous potential as a model for the study of developmental or disease processes, such as muscular dystrophy and spinal cord regeneration. Access to the genome sequence of E. electricus will provide society with a whole new set of molecular tools for understanding the biophysical control of electromotive molecules, excitable membranes and the cellular production of weak and strong electric fields. Understanding the regulation of ion channel genes will be central for efforts to induce the differentiation of electrogenic cells in other tissues and organisms and to control the intrinsic electric behaviours of these cells. Dense genomic sequence information of E. electricus will also help elucidate the genetic basis for the origin and adaptive diversification of a novel vertebrate tissue. The value of existing resources within the community of electric fish research will be greatly enhanced across a broad range of physiological and environmental sciences by having a draft genome sequence of the electric eel.  相似文献   

20.
L(+) lactate dehydrogenase (LDH) activity from the electric organ of Electrophorus electricus was measured in the presence of ATP in the forward (substrate lactate) and reverse (substrate pyruvate) enzymatic reactions. The I50 for ATP was first determined and then the kinetics of the reactions were investigated with either constant coenzyme (NAD or NADH) concentration and varying substrate (lactate or pyruvate) concentration, or, constant substrate and varying coenzyme concentration. The kinetic data showed that ATP inhibits LDH uncompetitively with respect to the reduced and the oxidized coenzyme. As for the substrates, ATP gives a mixed type inhibition for lactate and a noncompetitive inhibition for pyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号