首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
High affinity receptors for angiotensin II have been identified on purified cardiac sarcolemmal membranes. Equilibrium binding studies were performed with 125I-labeled angiotensin II and purified sarcolemmal vesicles from calf ventricle. The curvilinear Scatchard plots were evaluated by nonlinear regression analysis using a two-site model which identified a high affinity site Kd1 = 1.08 +/- 0.3 nM and N1 = 52 +/- 10 fmol/mg of protein and a low affinity site Kd2 = 52 +/- 16 nM and N2 = 988 +/- 170 fmol/mg of protein. Monovalent and divalent cations inhibited the binding of 125I-angiotensin II by 50%. The affinity of angiotensin II analogs for the receptor was determined using competitive binding assays; sarcosine, leucine-angiotensin II (Sar,Leu-angiotensin II), Kd = 0.53 nM; angiotensin II, Kd = 2.5 nM; des-aspartic acid-angiotensin II, Kd = 4.81 nM; angiotensin I, Kd = 77.6 nM. There is a positive correlation between potency in inducing positive inotropic response in myocardial preparations reported by others and potency for the hormone receptor observed in the binding assays. Pseudo-Hill plots of the binding data showed that agonists display biphasic binding with Hill numbers around 0.65 while antagonists recognized a single class of high affinity receptors with Hill numbers close to unity. These data were confirmed using 125I-Sar,Leu-angiotensin II in equilibrium binding studies which showed that this antagonist bound to a single class of receptor sites; Kd = 0.42 +/- 0.04 nM and N = 1050 +/- 110 fmol/mg of protein. Competition-binding experiments with this 125I-peptide yielded monophasic curves with Hill numbers close to unity for both agonists and antagonists. Membrane-bound 125I-angiotensin II was covalently linked to its receptor by the use of bifunctional cross-linking reagents such as dithiobis(succinimidyl propionate) and bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone. Analysis of the membranes showed the labeling of a component with an apparent Mr = 116,000. The affinity labeled species showed characteristics expected of a functional component of the high affinity receptor. The affinity labeling of this membrane component was inhibited by nanomolar angiotensin II or Sar,Leu-angiotensin II. Together these data indicate that high affinity receptors exist for angiotensin II that most likely mediate the positive inotropic effects of this hormone on myocardial cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The membrane receptor for insulin-like growth factor II (IGF II) has been purified to near homogeneity from rat placenta by chromatography of crude plasma membranes solubilized in Triton X-100 on agarose-immobilized IGF II. Elution of the IGF II receptor from the matrix at pH 5.0 in the presence of 1.5 M NaCl resulted in a receptor purification of 1100-fold from isolated plasma membranes, or 340-fold from the Triton extract with an average yield of about 50% in five separate purifications. Analysis of 125I-IGF II binding to the solubilized receptor in the Triton extract and in purified form by the method of Scatchard demonstrated no change in receptor affinity (Kd = 0.72 nM). Sodium dodecyl sulfate electrophoresis of the purified receptor showed one major band at Mr = 250,000 with only minor contamination. Affinity labeling of the receptor in isolated placenta membranes and in purified form using 125I-IGF II and the cross-linking agent disuccinimidyl suberate resulted in covalent labeling of only the Mr = 250,000 band. Such labeling was abolished by unlabeled IGF II but was unaffected by insulin, consistent with the previously reported specificity of IGF II receptor (Massague, J., and Czech, M.P. (1982) J. Biol. Chem. 257, 5038-5045). These results establish a one step affinity method for the purification of the type II IGF receptor that is rapid and highly efficient.  相似文献   

3.
Androgen binding was studied in cytosol of human fibroblasts at 4 degrees C. When 5 alpha-dihydrotestosterone (DHT) was the ligand, a curvilinear Scatchard plot was seen, which was resolved into two components: I the androgen receptor (AR), Kd = 0.12-0.44 nM, and II a low affinity species, Kd = 6.3-28 nM. The same cytosol demonstrated only type I binding for 3H-methyltrienolone (MTr), Kd = 0.10-0.40 nM. The AR, i.e., 3H-MTr binding activity, eluted at 440,000 d by gel filtration chromatography in pre-labeling and post-labeling experiments. When the ligand was 3H-DHT, binding activity in the 10,000-45,000 d range was seen in addition to AR. Thus, saturable nonreceptor steroid binding was seen for DHT but not for MTr. The latter is the preferred ligand for the study of the AR in this system.  相似文献   

4.
Mycoplasmataceae are known to express various proteins that are similar to those present in mammals. We report a strain of Mycoplasma hyorhinis isolated from opossum kidney cells with specific, high-affinity binding sites for human angiotensin II (Kd = 5.1 +/- 1.9 nM). In contrast, two strains of M. hominis revealed no specific binding. These binding sites resembled mammalian angiotensin II receptors by their high affinity and by their sensitivity to dithiothreitol. However, they are different from mammalian angiotensin II receptors in that they bind angiotensin I with high affinity (Kd = 1.6 +/- 0.29 nM) but not angiotensin III (Kd approximately 330,000 nM). [125I]-angiotensin II binding was not inhibited by angiotensin receptor subtype antagonists DuP 753 and CGP 42112A but it was sensitive to bacitracin and aprotinin. Positions Asp1, Ile5, His6 and Pro7 were essential for binding to M. hyorhinis as deletion of these residues led to a more than 10,000-fold decrease in affinity.  相似文献   

5.
To better define the biologic function of the type II insulin-like growth factor (IGF) receptor, we raised a blocking antiserum in a rabbit by immunizing with highly purified rat type II IGF receptor. On immunoblots of crude type II receptor preparations, only bands corresponding to the type II IGF receptor were seen with IgG 3637, indicating that the antiserum was specific for the type II receptor. Competitive binding and chemical cross-linking experiments showed that IgG 3637 blocked binding of 125I-IGF-II to the rat type II IGF receptor, but did not block binding of 125I-IGF-I to the type I IGF receptor, nor did IgG 3637 block binding of 125I-insulin to the insulin receptor. In addition, IgG 3637 did not inhibit the binding of 125I-IGF-II to partially purified 150- and 40-kDa IGF carrier proteins from adult and fetal rat serum. L6 myoblasts have both type I and type II IGF receptors. IGF-I was more potent than IGF-II in stimulating N-methyl-alpha-[14C]aminoisobutyric acid uptake, 2-[3H]deoxyglucose uptake, and [3H]leucine incorporation into cellular proteins. IgG 3637 did not stimulate either 2-[3H]deoxyglucose uptake, N-methyl-alpha-[14C]aminoisobutyric acid uptake, or [3H]leucine incorporation into protein when tested alone. Furthermore, IgG 3637 at concentrations sufficient to block type II receptors under conditions of the uptake and incorporation experiments did not cause a shift to the right of the dose-response curve for stimulation of these biologic functions by IGF-II. We conclude that the type II IGF receptor does not mediate IGF stimulation of N-methyl-alpha-[14C]aminoisobutyric acid and 2-[3H]deoxyglucose uptake and protein synthesis in L6 myoblasts; presumably, the type I receptor mediates these biologic responses. The anti-type II receptor antibody inhibited IGF-II degradation in the media by greater than 90%, suggesting that the major degradative pathway for IGF-II in L6 myoblasts utilizes the type II IGF receptor.  相似文献   

6.
The expression of insulin-like growth factor (IGF) receptors at the cell surface and the changes in IGF responsiveness during differentiation were studied in the L6 skeletal muscle cell line. Throughout the entire developmental sequence, distinct receptors for IGF I and IGF II that differed in structure and peptide specificity could be demonstrated. During differentiation, both 125I-IGF I and 125I-IGF II binding to the L6 cells decreased as a result of a 3-4-fold reduction in receptor number, whereas 125I-insulin binding increased. Under nonreducing conditions, disuccinimidyl suberate cross-linked 125I-IGF I and 125I-IGF II to two receptor complexes with apparent Mr greater than 300,000 (type I) and 220,000 (type II). Under reducing conditions, the apparent molecular weight of the type I receptor changed to Mr 130,000 (distinct from the 120,000 insulin receptor) and the type II receptor changed to 250,000. IGF I and IGF II both stimulated 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake in the L6 cells with a potency close to that of insulin, apparently through interaction with their own receptors. The stimulatory effects of IGF II correlated with its affinity for the type II but not the type I IGF receptor, as measured by inhibition of affinity labeling, whereas the effects of IGF I correlated with its ability to inhibit labeling of the type I receptor. In spite of the decrease in type I and type II receptor number, stimulation of 2-deoxy-glucose and alpha-aminoisobutyric acid uptake by the two IGFs increased during differentiation.  相似文献   

7.
The immunoglobulin fraction prepared from the serum of a rabbit immunized with purified type II insulin-like growth factor (IGF) receptor from rat placenta was tested for its specificity in inhibiting receptor binding of 125I-IGF II and for its ability to modulate IGF II action on rat hepatoma H-35 cells. The specific binding of 125I-IGF II to plasma membrane preparations from several rat cell types and tissues was inhibited by the anti-IGF II receptor Ig. Affinity cross-linking of 125I-IGF II to the Mr = 250,000 type II IGF receptor structure in rat liver membranes was blocked by the anti-receptor Ig, while no effect on affinity labeling of insulin receptor with 125I-insulin or IGF I receptor with 125I-IGF I or 125I-IGF II was observed. The specific inhibition of ligand binding to the IGF II receptor by anti-receptor Ig was species-specific such that mouse receptor was less potently inhibited and human receptor was unaffected. Rat hepatoma H-35 cells contain insulin and IGF II receptor, but not IGF I receptor, and respond half-maximally to insulin at 10(-10) M and to IGF II at higher concentrations with increased cell proliferation (Massague, J., Blinderman, L.A., and Czech, M.P. (1982) J. Biol. Chem. 257, 13958-13963). Addition of anti-IGF II receptor Ig to intact H-35 cells inhibited the specific binding of 125I-IGF II to the cells by 70-90%, but had no detectable effect on 125I-insulin binding. Significantly, under identical conditions anti-IGF II receptor Ig was without effect on IGF II action on DNA synthesis at both submaximal and maximal concentrations of IGF II. This finding and the higher concentrations of IGF II required for growth promotion in comparison to insulin strongly suggest that the Mr = 250,000 receptor structure for IGF II is not involved in mediating this physiological response. Rather, at least in H-35 cells, the insulin receptor appears to mediate the effects of IGF II on cell growth. Consistent with this interpretation, anti-insulin receptor Ig but not anti-IGF II receptor Ig mimicked the ability of growth factors to stimulate DNA synthesis in H-35 cells. We conclude that the IGF II receptor may not play a role in transmembrane signaling, but rather serves some other physiological function.  相似文献   

8.
Characterization of gingival epithelium epidermal growth factor receptor   总被引:1,自引:0,他引:1  
The binding characteristics of gingival epithelium epidermal growth factor (EGF) receptor were investigated using epithelial cell membranes from bovine gingiva. The binding of [125I]EGF was found to be time and protein concentration dependent, reversible, and specific. Unlabeled EGF competed for [125I]EGF binding with IC50 of 0.25nM and maximum displacement of 93% at 0.81nM. Scatchard analysis of the binding data inferred the presence of two binding sites, one of high affinity (Kd = 3.3 nM and Bmax = 47.3fmol/mg protein) and the other of a low affinity (Kd = 1.6 microM and Bmax = 1.9pmol/mg protein). Crosslinking of [125I]EGF to gingival membranes followed by polyacrylamide gel electrophoresis and autoradiography revealed a receptor protein of 170kDa.  相似文献   

9.
The site- or domain-specific immobilization of steroid receptor proteins with preserved structure and function would facilitate the identification and purification of receptor-associated regulatory components and nucleic acids. We have demonstrated previously that restricted surface regions of the estrogen receptor protein contain high affinity binding sites for immobilized Zn(II) ions. Possible conformational changes in receptor at the stationary phase immobilized metal ion interface were evaluated by monitoring alterations in the equilibrium dissociation constant (Kd) for [3H]estradiol. Soluble estrogen receptor proteins (unliganded) present in immature calf uterine cytosol were immobilized via surface-exposed Zn(II)-binding sites to beads of agarose derivatized with iminodiacetate (IDA)-Zn(II) ions. The IDA-Zn(II) bound receptor was incubated with increasing concentrations of [3H]estradiol (0.01-20 nM) in the presence and absence of unlabeled competitor (diethylstilbestrol) to determine the level of specific hormone binding. Steroid-binding experiments were performed in parallel with identical aliquots of soluble receptor. Analyses of the equilibrium binding data revealed the presence of a single class of high-affinity (Kd = 2.44 +/- 1.5 nM, n = 10) steroid-binding sites which were only marginally affected by receptor immobilization via surface-exposed Zn(II) bindings sites (Kd = 2.58 +/- 0.56 nM, n = 4). These data are consistent with the location of surface accessible Zn(II) binding site(s) on the receptor at or near the DNA binding domain which, upon occupancy, do not influence the steroid binding domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We investigated binding characteristics of basic fibroblast growth factor (bFGF) on membranes prepared from 4 human breast cancer cell lines and 38 primary BC biopsies. Competitive binding experiments were performed and analyzed using the "Ligand" program. Furthermore bFGF mitogenic activity was measured by [3H]thymidine incorporation into DNA from breast cancer cell lines. The presence of high-affinity binding sites was demonstrated in each cell type (MCF-7: Kd = 0.60 nM; T-47D: Kd = 0.55 nM; BT-20: Kd = 0.77 nM; MDA-MB-231: Kd = 0.34 nM). The presence of these high-affinity binding sites was confirmed with saturation experiments. A second class of low-affinity binding sites was detected in the 2 hormone-independent cells (BT-20: Kd = 2.9 nM; MDA-MB-231: Kd = 2.7 nM). bFGF stimulated the proliferation of MCF-7, T-47D, BT-20 but not MDA-MB-231 cell lines. With competition experiments, binding sites were detectable in 36/38 breast cancers; high-affinity binding sites (Kd less than 1 nM) were present in 19/36 cases and low-affinity binding sites (Kd greater than 2 nM) were present in 29/36 cases (the two classes of binding sites were present in 12 breast cancers). No relation between bFGF binding sites and node involvement, histologic type or grading of the tumor was evidenced. There were negative correlations (Spearman test) between total bFGF binding sites and estradiol receptor (P = 0.05) or progesterone receptor (P = 0.009). The demonstration of (1) bFGF specific binding sites in breast cancer membranes, and (2) bFGF growth stimulation of some breast cancer cell lines indicates that this factor may be involved directly in the growth of some breast cancers.  相似文献   

11.
We have studied insulin-like-growth-factor (IGF) binding in two subclones of the C2 myogenic cell line. In the permissive parental subclone, myoblasts differentiate spontaneously into myotubes in medium supplemented with fetal calf serum. Unlike permissive myoblasts, inducible myoblasts require high concentrations of insulin (1.6 microM) or lower concentrations of IGF-I (25 nM) to differentiate, and expression of MyoD1 is not constitutive. IGF receptors were studied in microsomal membranes of proliferating and quiescent myoblasts and myotubes. IGF-II binding was also studied in inducible myoblasts transfected with the MyoD1 cDNA (clone EP5). Both inducible and permissive cells exhibited a single class of binding sites with similar affinity for IGF-I (Kd 0.8-1.2 nM). Affinity cross-linking of [125I]IGF-I to microsomal membranes, under reducing conditions, revealed a binding moiety with an apparent molecular mass of 130 kDa in permissive cells and 140 kDa in inducible cells, which corresponded to the alpha subunit of the IGF-I receptor. In permissive quiescent myoblasts, linear Scatchard plots suggested that [125I]IGF-II bound to a single class of binding sites (Kd 0.6 nM) compatible with binding to the IGF-II/M6P receptor. This was confirmed by affinity cross-linking experiments showing a labeled complex with an apparent molecular mass of 260 kDa and 220 kDa when studied under reducing and non-reducing conditions, respectively. In contrast, competitive inhibition of [125I]IGF-II binding to inducible quiescent myoblasts generated curvilinear Scatchard plots which could be resolved into two single classes of binding sites. One of them corresponded to the IGF-II/M6P receptor (Kd 0.2 nM) as evidenced by cross-linking experiments. The second was the binding site of highest affinity (Kd 0.04 nM) which was less inhibited by IGF-I than by IGF-II and was not inhibited by insulin. It migrated in SDS/PAGE at a position equivalent a molecular mass of 140 kDa, under reducing conditions, and at approximately 300 kDa, under non-reducing conditions. The labeling of this atypical binding moiety was not inhibited by anti(IGF-II/M6P-receptor) immunoglobulin. It was also observed in permissive and inducible myoblasts at proliferating stage. It was absent for permissive quiescent myoblasts and from permissive and inducible myotubes. Forced expression of MyoD1 in inducible cells (EP5 cells) dramatically reduced [125I]IGF-II binding to this atypical receptor. It emerges from these experiments that C2 cells express a putative alpha 2 beta 2 IGF-II receptor structurally related to the insulin/IGF-I receptor family. It is present in myoblasts but not in myotubes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Pharmacological evidence has suggested that endothelin-3 (ET-3) may act via a novel form of ET receptor that is shared by ETA receptor antagonists but not by ETB receptor selective agonists. This study analyses the properties of interaction of ET-3 with recombinant bovine ETA receptor. Apparent Kd(ET-3) values as low as 50 nM were defined from [125I]ET-1 binding experiments performed at low (5 microg/ml) protein concentrations in the assays. Larger (up to 1 microM) values were artefactually obtained in experiments performed at larger protein concentrations. The three monoiodo ET-3 derivatives were synthetized. ([125I]Y14)ET-3 did not recognize ETA receptors. ([125I]Y6)ET-3 labelled 18% of [125I]ET-1 binding sites with a Kd value of 320 pM. ([125I]Y13)ET-3 labelled 44% of [125I]ET-1 binding sites with a Kd value of 130 pM. High affinity ([125I]Y6)ET-3 and ([125I]Y13)ET-3 bindings were prevented by ET-1 (Kd = 5-7 pM), ET-3 (Kd = 70-250 pM), BQ-123 (Kd = 2 nM) and FR139317 (Kd = 2 nM) but not by low concentrations of 4-AlaET-1, sarafotoxin S6c or IRL1620. The three monoiodo ET-3 derivatives bound to recombinant rat ETB receptors with a pM affinity. The results suggest that ET-3, ([125I]Y6)ET-3 and ([125I]Y13)ET-3 should not be considered as ETB receptor specific ligands.  相似文献   

13.
Gene expression, receptor binding and growth-promoting activity of insulin-like growth factor I (IGF I) was studied in cultured astrocytes from developing rat brain. Northern blot analysis of poly(A)+ RNAs from astrocytes revealed an IGF I mRNA of 1.9 kb. Competitive binding and receptor labelling techniques revealed two types of IGF receptor in astroglial cells. Type I IGF receptors consist of alpha-subunits (Mr 130,000) which bind IGF I with significantly higher affinity than IGF II, and beta-subunits (Mr 94,000) which show IGF I-sensitive tyrosine kinase activity. Type II IGF receptors are monomers (Mr 250,000) which bind IGF II with three times higher affinity than IGF I. Both types of IGF receptor recognize insulin weakly. DNA synthesis measured by cellular thymidine incorporation was stimulated 2-fold by IGF I and IGF II. IGF I was more potent than IGF II, and both were significantly more potent than insulin. Our findings suggest that IGF I is synthesized in fetal rat astrocytes and acts as a growth promoter for the same cells by activation of the type I IGF receptor tyrosine kinase. We propose that IGF I acts through autocrine or paracrine mechanisms to stimulate astroglial cell growth during normal brain development.  相似文献   

14.
Cloning and sequencing of the human type II insulin-like growth factor (IGF) receptor cDNA revealed an 80% deduced amino acid sequence homology with the bovine cation-independent mannose 6-phosphate (Man-6-P) receptor, suggesting identity of the two receptors (Morgan, D. O., Edman, J. C., Standring, D. N., Fried, V. A., Smith, M. C., Roth, R. A., and Rutter, W. J. (1987) Nature 329, 301-307). We have performed biochemical experiments that support this proposal. Rat liver type II IGF receptor, purified by the conventional method of IGF-II affinity chromatography, bound quantitatively to a beta-galactosidase affinity column and was eluted with Man-6-P. Bovine liver Man-6-P receptor, prepared by the conventional method of affinity chromatography on phosphomannan-Sepharose, bound IGF-II with high affinity (Kd = 1 nM). Affinity cross-linking of 125I-IGF-II to the Man-6-P receptor and analysis by sodium dodecyl sulfate-gel electrophoresis showed that beta-galactosidase, but not Man-6-P, inhibited the formation of the 250-kDa 125I-IGF-II-receptor complex. The inhibition by beta-galactosidase was prevented by coincubation with Man-6-P. 125I-IGF-II did not bind to the 46-kDa cation-dependent Man-6-P receptor. For immunologic studies we purified type II IGF receptors and Man-6-P receptors in parallel from rat placental membranes using either IGF-II- or beta-galactosidase affinity chromatography. A panel of five antisera that previously had been raised against either type II IGF receptor or Man-6-P receptor behaved identically toward type II IGF receptor versus Man-6-P receptor in ligand blocking and immunoprecipitation assays. Our data support the conclusion that the type II IGF receptor and the cation-independent Man-6-P receptor are the same protein and that the IGF-II and Man-6-P-binding sites are distinct.  相似文献   

15.
Two types of receptor for insulin-like growth factors (IGFs) have been identified on adult rat and human brain plasma membranes by competitive binding assay, affinity labelling, receptor phosphorylation and interaction with antibodies to insulin receptors. The type I IGF receptor consists of two species of subunits: alpha-subunits (mol. wt. approximately 115 000), which bind IGF I and IGF II with almost equal affinity and beta-subunits (mol. wt. approximately 94 000), the phosphorylation of which is stimulated by IGFs. The alpha-subunits of type I IGF receptors in brain and other tissues differ significantly (mol. wt. approximately 115 000 versus 130 000), whereas the beta-subunits are identical (mol. wt. approximately 94 000). The type II IGF receptor in brain is a monomer (mol. wt. approximately 250 000) like that in other tissues. Two antibodies to insulin receptors, B2 and B9, interact with type I but not with type II IGF receptors. B2 is more potent than B9 in inhibiting IGF binding and in immunoprecipitating type I IGF receptors, in contrast to their almost equal effects on insulin receptors. This pattern is characteristic for IGF receptors in other cells. The presence of two types of IGF receptor in mammalian brain suggests a physiological role of IGFs in regulation of nerve cell function and growth. Since IGF II, but not IGF I, is present in human brain, we propose that IGF II interacts with both types of IGF receptor to induce its biological actions.  相似文献   

16.
Human T cells activated with mitogens, antigens, or antibodies to the T-cell receptor complex acquire a cascade of new receptors, including the receptors for interleukin-2, transferrin, and insulin. We investigated whether receptors for insulin-like growth factors (IGF) also were expressed on activated T cells. Based on competitive binding studies, immunoprecipitation of labeled cell surface receptors and blocking of radiolabeled peptide binding by a specific monoclonal antibody (alpha IR-3) to the type I IGF receptor, as well as affinity crosslinking of radiolabeled peptides to their receptors, we concluded that both type I and type II IGF receptors are expressed on activated T cells. A specific binding site for IGF-II also was observed on the type I IGF receptor which was not inhibited by alpha IR-3. Receptors for IGF were more numerous on activated T cells than on resting T cells, and their peak expression appeared by the peak of DNA synthesis. Thus, human activated T cells were shown to express both type I and II IGF receptors which could potentially play a role in the regulation of T-cell proliferation, differentiation, and function.  相似文献   

17.
Using affinity cross-linking techniques, we report the presence of type I IGF and type II IGF receptors in Madin-Darby canine kidney cells, a line of cells lacking insulin receptors. The IGF receptors were further characterized by competition binding studies and found to be similar to IGF receptors in other tissue types. In Madin-Darby canine kidney cells, the type I IGF receptor binds IGF-I greater than IGF-II greater than insulin and the type II IGF receptor binds IGF-II and IGF-I with approximately the same affinity, but does not bind insulin.  相似文献   

18.
Abstract

Human platelets, freshly isolated from healthy human adults, express receptors for insulin-like growth factor I. The IC50 for displacement of 125I-IGF-I binding by unlabeled IGF-I was 0.2 nM, by IGF-II 32 nM and by insulin 160 nM. Scatchard analysis of IGF-I binding demonstrates dissociation constants of 0.14 ± 0.08 nM for high affinity binding site and 54 ± 18 nM for low affinty binding site. The presence of the α-subunit of type I IGF receptor, as high affinity binding site, was verified by affinity crosslinking of 125I-IGF-I to platelet surface membranes. Under reducing con-conditions a Mr= 135,000 band was preferentially labeled. The complete type I IGF receptor complex, which revealed under nonreducing conditions, has an approximately molecular mass of Mr > 400,000. The immunoprecipitation of the 125I-IGF-I cross-linked type I receptor with αIR-3 confirmed the results achieved by affinity crosslinking.  相似文献   

19.
Angiotensin II vascular receptors in fetal and neonatal rats   总被引:1,自引:0,他引:1  
Specific binding sites for angiotensin II in aorta and renal arteries have been studied in rat fetuses (18th day of pregnancy) and 1-day-old newborn rats by binding studies in arterial membranes using [125I] ileu-5-angiotensin II. One type of angiotensin receptor was found both in fetuses and in the newborns; the capacity of this (RT) decreased immediately after birth (from 0.06 +/- 0.01 nM to 0.02 +/- 0.005 nM; +/- SEM) and the affinity (Kd) increased at birth (from 3.5 +/- 0.6 nM to 19.5 +/- 1.2 nM; +/- SEM). Localization of the specific binding sites was studied by autoradiography on arteries from fetal and newborn rats either perfused with iodinated angiotensin II by cannulation of the aorta or in vitro on cryostat sections incubated with the radioactive angiotensin II. Both in fetuses and in the newborn the binding sites were located in the tunica media of the arteries.  相似文献   

20.
W Sutanto  E R de Kloet 《Life sciences》1988,43(19):1537-1543
In vitro cytosol binding assays have shown the properties of binding of a novel steroid, ZK91587 (15 beta, 16 beta-methylene-mexrenone) in the brain of rats. Scatchard and Woolf analyses of the binding data reveal the binding of [3H] ZK91587 to the total hippocampal corticosteroid receptor sites with high affinity (Kd 1.9 nM), and low capacity (Bmax 17.3 fmol/mg protein). When 100-fold excess RU28362 was included simultaneously with [3H] ZK91587, the labelled steroid binds with the same affinity (Kd 1.8 nM) and capacity (Bmax 15.5 fmol/mg protein). Relative binding affinities (RBA) of various steroids for the Type I or Type II corticosteroid receptor in these animals are: Type I: ZK91587 = corticosterone (B) greater than cortisol (F); Type II: B greater than F much greater than ZK91587. In the binding kinetic study, ZK91587 has a high association rate of binding in the rat (20.0 x 10(7) M-1 min-1). The steroid dissociates following a one slope pattern (t 1/2 30 h), indicating, the present data demonstrate that in the rat hippocampus, ZK91587 binds specifically to the Type I (corticosterone-preferring/mineralocorticoid-like) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号