首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpesvirus saimiri (Saimiriine herpesvirus-2) causes lethal T lymphoproliferative diseases in the susceptible species and transforms T lymphocytes to continuous growth in vitro. H. saimiri-induced transformation of T cells is becoming an important experimental tool of biomedical research. Two proteins of H. saimiri subgroup C, Tip and StpC, are essential for T cell transformation by this virus. It has been shown previously that StpC transforms fibroblasts, activates NF-kappaB, and binds to tumor necrosis factor (TNF)-receptor-associated factor (TRAF) proteins, but the molecular mechanism of its action remains insufficiently understood. This study further characterized the effect of StpC on NF-kappaB. First, StpC activates NF-kappaB via the consensus pathway involving activation of I-kappaB kinase and subsequent phosphorylation and degradation of I-kappaB in both T lymphoid and epithelial cells. Second, triggering of this pathway by StpC in both T lymphoid and epithelial cells is dependent on the presence of functional NF-kappaB-inducing kinase (NIK). Third, StpC physically interacts with TRAF in epithelial cells, and the effect of StpC on NF-kappaB activity in these cells requires the presence of functional TRAF. Finally the effect of StpC is completely independent of TNF-alpha, a well described stimulus of NF-kappaB activity. Moreover it appears that StpC uncouples stimulation of NF-kappaB activity from TNF-alpha stimulation. Overall these results argue that the effect of StpC on NF-kappaB is similar to the effects of other viral proteins, "usurping" the TRAF/NIK/I-kappaB kinase pathway, and reinforce the notion that the role of StpC in cell transformation by H. saimiri may be mediated by signaling that results in NF-kappaB activation.  相似文献   

2.
3.
The protein tyrosine kinase ZAP-70 plays a pivotal role involved in signal transduction through the T cell receptor and CD2. Defects in ZAP-70 result in severe combined immunodeficiency. We report that Herpesvirus saimiri, which does not code for a ZAP-70 homologue, can replace this tyrosine kinase. H. saimiri is an oncogenic virus that transforms human T cells to stable growth based on mutual CD2-mediated activation. Although CD2-mediated proliferation of ZAP-70-deficient uninfected T cells was absent, we could establish H. saimiri-transformed T cell lines from two unrelated patients presenting with ZAP-70 deficiencies. In these cell lines, CD2 and CD3 activation were restored in terms of [Ca(2+)](i), MAPK activation, cytokine production, and proliferation. Activation-induced tyrosine phosphorylation of zeta remained defective. The transformed cells expressed very high levels of the ZAP-70-related kinase Syk. This increased expression was not observed in the primary T cells from the patients and was not due to the transformation by the virus because transformed cell lines established from control T cells did not present this particularity. In conclusion, wild type H. saimiri can restore CD2- and CD3-mediated activation in signaling-deficient human T cells. It extends our understanding of interactions between the oncogenic H. saimiri and the infected host cells.  相似文献   

4.
Marmoset T lymphocytes transformed by herpesvirus saimiri contain a set of five virally encoded U RNAs called HSUR1 through HSUR5. HSUR genes have been individually transfected into a nonlymphoid, nonsimian cell line (HeLa cells) in the absence of any other coding regions of the herpesvirus saimiri genome. The levels of HSUR1 through HSUR4 in HeLa transient-expression systems are comparable to those found in virally transformed T cells (23 to 91%). In contrast, HSUR5 is expressed at ninefold-higher levels in transfected HeLa cells. Immunoprecipitation experiments show that HSURs expressed in transfected cells bind proteins with Sm determinants and acquire a 5' trimethylguanosine cap structure, as they do in transformed T cells. HSUR1 or HSUR4 particles from transfected HeLa cells migrate between 10S and 15S in velocity gradients, identical to the sedimentation of "monoparticles" produced in virally transformed lymphocytes. We conclude from these transfection experiments that no other herpesvirus saimiri or host-cell-specific gene products appear to be required for efficient expression of the HSUR genes or for subsequent assembly of the viral U RNAs into small nuclear ribonucleoprotein particles. In lymphocytes transformed by herpesvirus saimiri, HSUR small nuclear ribonucleoprotein particles are involved in higher-order complexes that sediment between 20S and 25S. HSUR1, HSUR2, and HSUR5 dissociate from such complexes upon incubation at 30 degrees C, whereas the complex containing HSUR4 is stable to incubation.  相似文献   

5.
Lymphoma induction and T-cell transformation by herpesvirus saimiri strain C488 depends on two viral oncoproteins, StpC and Tip. The major interaction partner of Tip is the protein tyrosine kinase Lck, a key regulator of T-cell activation. The Lck binding domain (LBD) of Tip comprises two interaction motifs, a proline-rich SH3 domain-binding sequence (SH3B) and a region with homology to the C terminus of Src family kinase domains (CSKH). In addition, biophysical binding analyses with purified Lck-SH2 domain suggest the phosphorylated tyrosine residue 127 of Tip (pY127) as a potential third Lck interaction site. Here, we addressed the relevance of the individual binding motifs, SH3B, CSKH, and pY127, for Tip-Lck interaction and for human T-cell transformation. Both motifs within the LBD displayed Lck binding activities and cooperated to achieve a highly efficient interaction, while pY127, the major tyrosine phosphorylation site of Tip, did not enhance Lck binding in T cells. Herpesvirus saimiri strain C488 recombinants lacking one or both LBD motifs of Tip lost their transforming potential on human cord blood lymphocytes. Recombinant virus expressing Tip with a mutation at position Y127 was still able to transform human T lymphocytes but, in contrast to wild-type virus, was strictly dependent on exogenous interleukin-2. Thus, the strong Lck binding mediated by cooperation of both LBD motifs was essential for the transformation of human T cells by herpesvirus saimiri C488. The major tyrosine phosphorylation site Y127 of Tip was particularly required for transformation in the absence of exogenous interleukin-2, suggesting its involvement in cytokine signaling pathways.  相似文献   

6.
Herpesvirus saimiri is capable of transforming T lymphocytes of various primate species to stable growth in culture. The interaction of the T-cellular tyrosine kinase p56(lck) with the transformation-associated viral protein Tip has been shown before to activate the kinase and provides one model for the T-cell-specific transformation by herpesvirus saimiri subgroup C strains. In contrast to other primate species, squirrel monkeys (Saimiri sciureus) are naturally infected with the virus without signs of lymphoma or other disease. Although the endogenous virus was regularly recovered from peripheral blood cells from squirrel monkeys, we observed that the T cells lost the virus genomes in culture. Superinfection with virus strain C488 did not induce growth transformation, in contrast to parallel experiments with T cells of other primate species. Surprisingly, p56(lck) was enzymatically inactive in primary T-cell lines derived from different squirrel monkeys, although the T cells reacted appropriately to stimulatory signals. The cDNA sequence revealed minor point mutations only, and transfections in COS-7 cells demonstrated that the S. sciureus lck gene codes for a functional enzyme. In S. sciureus, the tyrosine kinase p56(lck) was not activated after T-cell stimulation and enzymatic activity could not be induced by Tip of herpesvirus saimiri C488. However, the suppression of p56(lck) was partially released after administration of the phosphatase inhibitor pervanadate. This argues for unique species-specific conditions in T cells of S. sciureus which may interfere with the transforming activity and pathogenicity of herpesvirus saimiri subgroup C strains in their natural host.  相似文献   

7.
Human T-cell leukemia virus type 1 (HTLV-1) immortalizes human CD4+ T lymphocytes in culture. Previous studies show that in the context of a herpesvirus saimiri vector, the sequence of the X region at the 3' end of the HTLV-1 genome is also capable of immortalizing CD4+ lymphocytes in the absence of HTLV-1 structural proteins. The X region of HTLV-1 encodes two trans-acting viral proteins, the 42-kDa Tax protein and the 27-kDa Rex protein. Infection of human cord blood cells with herpesvirus saimiri recombinants which contain HTLV-1 X region sequences defective for expression of tax, rex, or both tax and rex demonstrates that tax function is necessary and sufficient for immortalization of primary human CD4+ cord blood lymphocytes in culture in the context of the herpesvirus saimiri vector.  相似文献   

8.
Herpesvirus saimiri L-DNA sequences between 0.0 and 4.0 map units (4.5 kilobase pairs) are required for oncogenicity; these sequences are not required for replication of the virus. To investigate the basis for the lack of oncogenicity of mutants with deletions in this region and to study the function of this region, we developed a reliable system for in vitro immortalization by herpesvirus saimiri. In contrast to peripheral blood lymphocytes from cotton-top tamarins (Saguinus oedipus) and owl monkeys (Aotus sp.), infection of peripheral blood lymphocytes from common marmosets (Callithrix jacchus) in vitro with herpesvirus saimiri consistently yielded continuously growing lymphoblastoid cell lines. Such cell lines were established using strains of herpesvirus saimiri from group A and group non-A, non-B; however, repeated attempts to immortalize common marmoset peripheral blood lymphocytes using strains from group B were not successful. Common marmoset cell lines immortalized by herpesvirus saimiri were T12+, T8+, T4-, and B1-, indicating that they were derived from suppressor/cytotoxic T lymphocytes. Cell lines could not be established using the nononcogenic mutants 11att and S4, both of which were derived from the group A strain 11 virus. Strain 11att has a spontaneous deletion and S4 has a constructed deletion in the 0.0 to 4.0 map unit region. Constructed strains which had these deleted sequences restored did immortalize common marmoset peripheral blood lymphocytes. Thus, the nononcogenic deletion mutants are defective for immortalization. This system should facilitate attempts to define the sequences responsible for immortalization and to determine their function.  相似文献   

9.
Sequences within the rightmost 7 kilobases of the unique L DNA of herpesvirus saimiri are required for oncogenicity of the virus. The same DNA region has been found to be highly variable among different strains of herpesvirus saimiri. On the basis of this variability, herpesvirus saimiri strains were classified into groups A, B, and non-A, non-B. Herpesvirus saimiri strains representing the three groups were used successfully for in vitro immortalization of phytohemagglutinin-activated, interleukin 2 (IL-2)-expanded peripheral blood lymphocytes of common marmosets (Callithrix jacchus). Peripheral blood leukocytes could be immortalized from only a subset of common marmosets (5 of 13). All of the immortalized cell lines contained covalently closed circular viral DNA molecules and initially showed a low level of virus production. Cells immortalized by group A and group non-A, non-B strains did not require IL-2 in the medium. However, the only group B immortalized cell line, 473-SMHI, did not grow well in the absence of IL-2. The different characteristics of cell lines immortalized by herpesvirus saimiri strains belonging to different groups may help to elucidate some functions coded by the highly variable DNA region which is involved in the oncogenic process.  相似文献   

10.
11.
Herpesvirus ateles is a gamma-2-herpesvirus which naturally infects spider monkeys (Ateles spp.) and causes malignant lymphoproliferative disorders in various other New World primates. The genomic sequence of herpesvirus ateles strain 73 revealed a close relationship to herpesvirus saimiri, with a high degree of variability within the left terminus of the coding region. A spliced mRNA transcribed from this region was detected in New World monkey T-cell lines transformed by herpesvirus ateles in vitro or derived from T cells of infected Saguinus oedipus. The encoded viral protein, termed Tio, shows restricted homology to the oncoprotein StpC and to the tyrosine kinase-interacting protein Tip, two gene products responsible for the T-cell-transforming and oncogenic phenotype of herpesvirus saimiri group C strains. Tio was detectable in lysates of the transformed T lymphocytes. Dimer formation was observed after expression of recombinant Tio. After cotransfection, Tio was phosphorylated in vivo by the protein tyrosine kinases Lck and Src and less efficiently by Fyn. Stable complexes of these Src family kinases with the viral protein were detected in lysates of the transfected cells. Binding analyses indicated a direct interaction of Tio with the SH3 domains of Lyn, Hck, Lck, Src, Fyn, and Yes. In addition, tyrosine-phosphorylated Tio bound to the SH2 domains of Lck, Src, or Fyn. Thus, herpesvirus ateles-encoded Tio may contribute to viral T-cell transformation by influencing the function of Src family kinases.  相似文献   

12.
Human T cells are transformed to antigen-independent permanent growth in vitro upon infection with herpesvirus saimiri subgroup C strains. The viral oncoproteins required for this process, StpC and Tip, could be replaced by Tio, the oncoprotein of herpesvirus ateles. Here we demonstrate that proliferation of lymphocytes transformed with Tio-recombinant herpesvirus saimiri required the activity of Src family kinases. Src kinases had previously been identified as interaction partners of Tio. This interaction was now shown to be independent of any of the four tyrosine residues of Tio but to be dependent on an SH3-binding motif. Mutations within this motif abrogated the transforming capabilities of Tio-recombinant herpesvirus saimiri. Furthermore, kinase interaction resulted in the phosphorylation of Tio on a single tyrosine residue at position 136. Mutation of this residue in the viral context revealed that this phosphorylation site, but none of the other tyrosine residues, was required for T-cell transformation. These data indicate that the interaction of Tio with a Src kinase is essential for both the initiation and the maintenance of T-cell transformation by recombinant herpesvirus saimiri. The requirement for the tyrosine phosphorylation site at position 136 suggests a role for Tio beyond simple deregulation of the kinase.  相似文献   

13.
The characteristics of 4 T-cell clones, each capable of producing phagocytosis-inducing factor (PIF), were compared before and after transformation with human T-lymphotropic virus Type 1 (HTLV-I). Before transformation, the four clones produced PIF transiently after stimulation with antigen or mitogen and expressed the phenotype T3(CD3)+, T4(CD4)+, T8(CD8)-, 4B4+, and 2H4-; the three clones that could be studied also expressed the OKT17 marker. After transformation, the cells expressed the same phenotypic markers, except for two clones that lost the CD3 antigen. The clones that were available for study before and after transformation also expressed the antigen detected by the monoclonal antibody 5/9. In addition, all clones secreted PIF constitutively after transformation. These characteristics of the four transformed T-cell clones closely resembled those of three long-term HTLV-I-transformed T-cell lines, HUT-102, C5/MJ, and MT-2, which also produced PIF constitutively and expressed the CD4 and 4B4, but not 2H4, markers. In addition, two other HTLV-I-transformed lines generated in the present study produced PIF constitutively. Since all nine HTLV-I transformed cell lines and all four untransformed clones secreted PIF, and since our previous studies have shown that only approximately 20% of CD4+ peripheral blood lymphocytes secrete PIF, these results suggest that HTLV-I may preferentially transform PIF-secreting CD4+ lymphocytes. The predominant 4B4+, 5/9+, 2H4- phenotype (characteristic of antigen-responsive T cells) of the untransformed and transformed clones as well as the long-term HTLV-I-transformed lines also suggests that the subset of CD4+ lymphocytes that proliferates in response to soluble antigen may be especially susceptible to transformation with this virus.  相似文献   

14.
15.
Helicobacter pylori infects approximately half the human population. The outcomes of the infection range from gastritis to gastric cancer and appear to be associated with the immunity to H. pylori. Patients developing nonatrophic gastritis present a Th1 response without developing protective immunity, suggesting that this bacterium may have mechanisms to evade the immune response of the host. Several H. pylori proteins can impair macrophage and T cell function in vitro through mechanisms that are poorly understood. We tested the effect of H. pylori extracts and live H. pylori on Jurkat cells and freshly isolated human normal T lymphocytes to identify possible mechanisms by which the bacteria might impair T cell function. Jurkat cells or activated T lymphocytes cultured with an H. pylori sonicate had a reduced proliferation that was not caused by T cell apoptosis or impairment in the early T cell signaling events. Instead, both the H. pylori sonicate and live H. pylori induced a decreased expression of the CD3zeta-chain of the TCR. Coculture of live H. pylori with T cells demonstrated that the wild-type strain, but not the arginase mutant rocF(-), depleted L-arginine and caused a decrease in CD3zeta expression. Furthermore, arginase inhibitors reversed these events. These results suggest that H. pylori arginase is not only important for urea production, but may also impair T cell function during infection.  相似文献   

16.
Herpesvirus saimiri group C strains are capable of transforming human and simian T-lymphocyte populations to permanent antigen-independent growth. Two viral oncoproteins, StpC and Tip, that are encoded by a single bicistronic mRNA, act in concert to mediate this phenotype. A closely related New World monkey herpesvirus, herpesvirus ateles, transcribes a single spliced mRNA at an equivalent genome locus. The encoded protein, Tio, has sequence homologies to both StpC and Tip. We inserted the tio sequence of herpesvirus ateles strain 73 into a recombinant herpesvirus saimiri C488 lacking its own stpC/tip oncogene. Simian as well as human T lymphocytes were growth transformed by the chimeric Tio-expressing viruses. Thus, a single herpesvirus protein appears to be responsible for the oncogenic effects of herpesvirus ateles.  相似文献   

17.
Purified group A streptococcal M proteins, pep M5 and pep M6, bearing heart cross-reactive epitopes were compared with pep M24, which lacks such epitopes, in their ability to induce functional differentiation of human T lymphocytes. Lymphocytes activated by pep M5 and pep M6 demonstrated cytotoxic activity against cultured heart cells, whereas pep M24-activated cells differentiated into suppressor T cells, which specifically blocked cytotoxic T lymphocytes against cultured human myocardial cells and not NK cell activity against K562 cells. Pep M5 and not pep M24 induced an increase in the number of CD4, 4B4, helper/inducer T cells. In addition, these M proteins appear to induce different biochemical changes in T lymphocytes. Both pep M5 and pep M24 induced the phosphorylation of a 35-kDa cytoplasmic protein; however, only pep M5 induced the phosphorylation of a 28-kDa membrane protein, primarily in CD4 T cells. These data indicate that the virulent M protein Ag of group A streptococci may exert their effect on the human immune system via different mechanisms. Determining these mechanisms and the biochemical pathways involved in T cell differentiation triggered by these Ag may be important in understanding the pathogenesis of post-streptococcal diseases.  相似文献   

18.
The pathogenicity of chronic gastroduodenal diseases is very often related to Helicobacter pylori infections. Most H. pylori strains carry the cagA gene encoding an immunodominant 120- to 128-kDa protein which is considered a virulence marker. The majority of CagA-positive H. pylori isolates also produce a 95-kDa protein cytotoxin (VacA) causing vacuolation and degradation of mammalian cells. In our previous study we have shown that live H. pylori bacteria and their sonicates inhibit PHA-driven proliferation of human T lymphocytes. The H. pylori CagA and VacA proteins were suspected of a paralyzing effect of H. pylori on T cell proliferation. In this report, by using isogenic H. pylori mutant strains defective in CagA and VacA proteins, we determined that CagA is responsible for the inhibition of PHA-induced proliferation of T cells.  相似文献   

19.
M Alt  B Fleckenstein  R Grassmann 《Gene》1991,102(2):265-269
The genome of Herpesvirus saimiri, a lymphotropic virus of non-human primates, was used to develop a vector system for transducing foreign genes into primary human T-cells and T-lymphoid cell lines. Recombinant viruses were obtained by homologous recombination of the viral genome with linearized plasmid DNA. The plasmid used contained a fragment of virion DNA, a hygromycin-B-resistance marker (HyR), and a multiple cloning site for the insertion of additional expression cassettes. The resulting recombinants were efficiently enriched and were plaque-purified. The virus mediating HyR and a H. saimiri strain carrying the Geneticin-resistance marker were used to infect the human T-lymphoid cell line Jurkat. Lymphocytes with a double-resistant phenotype were shown to contain the two different H. saimiri recombinants persisting as episomes at high multiplicity. The H. saimiri vector system will be suitable to study cooperating regulatory genes in T-lymphocytes.  相似文献   

20.
Lee H  Choi JK  Li M  Kaye K  Kieff E  Jung JU 《Journal of virology》1999,73(5):3913-3919
The STP oncoproteins of the herpesvirus saimiri (HVS) subgroup A strain 11 and subgroup C strain 488 are now found to be stably associated with tumor necrosis factor receptor-associated factor (TRAF) 1, 2, or 3. Mutational analyses identified residues of PXQXT/S in STP-A11 as critical for TRAF association. In addition, a somewhat divergent region of STP-C488 is critical for TRAF association. Mutational analysis also revealed that STP-C488 induced NF-kappaB activation that was correlated with its ability to associate with TRAFs. The HVS STP-C488 P10-->R mutant was deficient in human T-lymphocyte transformation to interleukin-2-independent growth but showed wild-type phenotype for marmoset T-lymphocyte transformation in vitro and in vivo. The STP-C488 P10-->R mutant was also defective in Rat-1 fibroblast transformation, and fibroblast cell transformation was blocked by a TRAF2 dominant-negative mutant. These data implicate TRAFs in STP-C488-mediated transformation of human lymphocytes and rodent fibroblasts. Other factors are implicated in immortalization of common marmoset T lymphocytes and may also be critical in the transformation of human lymphocytes and rodent fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号