首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The binding of thyroid hormone receptors to DNA is enhanced by heterodimerization with nuclear proteins. One such heterodimerization partner has recently been characterized as the retinoid X receptor. 9-cis-Retinoic acid has been identified as a natural ligand for retinoid X receptors, suggesting a potential receptor-mediated interaction between thyroid hormone and 9-cis-retinoic acid in the regulation of thyroid hormone-responsive genes. A transient cotransfection assay was used to test for such an interaction. When a complex thyroid hormone response element composed of both direct and inverted repeat hexamers was tested, these two ligands activated gene expression synergistically. In contrast, when the response element consisted only of directly repeated hexamers, unliganded retinoid X receptors enhanced thyroid hormone responsiveness, but 9-cis-retinoic acid induced no additional activation. The results suggest a unique mechanism to achieve differential suggest a unique mechanism to achieve differential thyroid hormone sensitivity of thyroid hormone-responsive genes within a cell. Genes with appropriate response elements will show amplification of the thyroid hormone response by 9-cis-retinoic acid in the presence of retinoid X receptors; other thyroid hormone-responsive genes will be influenced by retinoid X receptors, but not 9-cis-retinoic acid.  相似文献   

2.
3.
4.
Sepulveda VA  Weigel NL  Falzon M 《Steroids》2006,71(2):102-115
Parathyroid hormone-related protein (PTHrP) increases the growth and osteolytic potential of prostate cancer cells, making it important to control PTHrP expression in these cells. We show that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and its non-hypercalcemic analog, EB1089, decrease PTHrP mRNA and cellular protein levels in the androgen-dependent human prostate cancer cell line LNCaP and its androgen-independent derivative, the C4-2 cell line. This effect is mediated via a negative Vitamin D response element (nVDREhPTHrP) within the human PTHrP gene and involves an interaction between nVDREhPTHrP and the Vitamin D receptor (VDR). The retinoid X receptor (RXR) is a frequent heterodimeric partner of the VDR. We show that RXRalpha forms part of the nuclear protein complex that interacts with nVDREhPTHrP along with the VDR in LNCaP and C4-2 cells. We also show that the RXR ligand, 9-cis-retinoic acid, downregulates PTHrP mRNA levels; this decrease is more pronounced in LNCaP than in C4-2 cells. In addition, 9-cis-retinoic acid enhances the 1,25(OH)2D3-mediated downregulation of PTHrP expression in both cell lines; this effect also is more pronounced in LNCaP cells. Proliferation of LNCaP, but not C4-2, cells is decreased by 9-cis-retinoic acid. Promoter activity driven by nVDREhPTHrP cloned upstream of the SV40 promoter and transiently transfected into LNCaP and C4-2 cells is downregulated in response to 1,25(OH)2D3 and EB1089 in both cell lines. Co-treatment with these compounds and 9-cis-retinoic acid further decreases CAT activity in LNCaP, but not C4-2, cells. These results indicate that PTHrP gene expression is regulated by 1,25(OH)2D3 in a cell type-specific manner in prostate cancer cells.  相似文献   

5.
Vitamin A affects many aspects of T lymphocyte development and function. The vitamin A metabolites all-trans- and 9-cis-retinoic acid regulate gene expression by binding to the retinoic acid receptor (RAR), while 9-cis-retinoic acid also binds to the retinoid X receptor (RXR). Naive DO11.10 T lymphocytes expressed mRNA and protein for RAR-alpha, RXR-alpha, and RXR-beta. DNA microarray analysis was used to identify RXR-responsive genes in naive DO11.10 T lymphocytes treated with the RXR agonist AGN194204. A total of 128 genes was differentially expressed, including 16 (15%) involved in cell growth or apoptosis. Among these was Bcl2a1, an antiapoptotic Bcl2 family member. Quantitative real-time PCR analysis confirmed this finding and demonstrated that Bcl2a1 mRNA expression was significantly greater in nonapoptotic than in apoptotic T lymphocytes. The RXR agonist 9-cis-retinoic acid also increased Bcl2a1 expression, although all-trans-retinoic acid and ligands for other RXR partner receptors did not. Treatment with AGN194204 and 9-cis-retinoic acid significantly decreased apoptosis measured by annexin V staining but did not affect expression of Bcl2 and Bcl-xL. Bcl2a1 promoter activity was examined using a luciferase promoter construct. Both AGN194204 and 9-cis-retinoic acid significantly increased luciferase activity. In summary, these data demonstrate that RXR agonists increase Bcl2a1 promoter activity and increase expression of Bcl2a1 in naive T lymphocytes but do not affect Bcl2 and Bcl-xL expression in naive T lymphocytes. Thus, this effect on Bcl2a1 expression may account for the decreased apoptosis seen in naive T lymphocytes treated with RXR agonists.  相似文献   

6.
We utilized [20-methyl-(3)H]-9-cis-retinoic acid ([(3)H]9-cis-RA) as a direct photoaffinity probe for the characterization of human recombinant retinoid X receptor beta protein (RXRbeta). The photoaffinity labeling was light- and concentration-dependent, saturable, and protected by unlabeled 9-cis-RA in a concentration-dependent manner, indicating that binding occurred in the RXR retinoid binding site. all-trans-Retinoic acid (atRA) did not affect labeling with the 9-cis derivative, confirming that atRA does not compete for the 9-cis-RA binding site. Several retinoid, fatty acid, and bile acid ligands were evaluated for their ability to recognize the 9-cis-RA binding site. Retinol, atRA glucuronide, 13-cis-RA, dolichol, 5,6-epoxy-RA, and vitamin D(3) did not compete for the 9-cis-RA binding site. However, the saturated diterpenoid phytanic acid (PA) and docosahexaenoic acid, which have been recently shown to activate the nuclear receptor, RXR, competed with 9-cis-RA labeling, showing high affinity for the 9-cis-RA binding site. Oleic acid, arachidonic acid, and butyric acid did not interact. However, the bile acid lithocholic acid competed efficiently with 9-cis-RA for the binding site. These data validated the photoaffinity assay as an excellent system for the identification and evaluation of ligands for RXR.  相似文献   

7.
8.
The prohormone convertases (PCs) PC1 and PC2 are involved in the tissue-specific endoproteolytic processing of neuropeptide precursors within the secretory pathway. We previously showed that changes in thyroid status altered pituitary PC2 mRNA and that this regulation was due to triiodothyronine-dependent interaction of the thyroid hormone receptor (TR) with negative thyroid hormone response elements (nTREs) contained in a large proximal region of the human PC2 promoter. In the current study, we examined the in vivo regulation of brain PC2 mRNA by thyroid status and found that 6-n-propyl-2-thiouracil-induced hypothyroidism stimulated, whereas thyroxine-induced hyperthyroidism suppressed, PC2 mRNA levels in the rat hypothalamus and cerebral cortex. To address the mechanism of T3 regulation of the PC2 gene, we used human PC2 (hPC2) promoter constructs transiently transfected into GH3 cells and found that triiodothyronine negatively and 9-cis-retinoic acid positively regulated hPC2 promoter activity. EMSAs, using purified TRalpha1 and retinoid X receptor-beta (RXRbeta) proteins demonstrated that TRalpha bound the distal putative nTRE-containing oligonucleotide in the PC2 promoter, and RXR bound to both nTRE-containing oligonucleotides. EMSAs with oligonucleotides containing deletion mutations of the nTREs demonstrated that the binding to TR and RXR separately is reduced, but specific binding to TR and RXR together persists even with deletion of each putative nTRE. We conclude that there are two novel TRE-like sequences in the hPC2 promoter and that these regions act in concert in a unique manner to facilitate the effects of thyroid hormone and 9-cis-retinoic acid on PC2.  相似文献   

9.
Protein amide hydrogen/deuterium (H/D) exchange was used to compare the interactions of two antagonists, UVI 2112 and UVI 3003, with that of the agonist, 9-cis-retinoic acid, upon binding to the human retinoid X receptor alpha ligand-binding domain (hRXRalpha LBD) homodimer. Analysis of the H/D content by mass spectrometry showed that in comparison to 9-cis-retinoic acid, the antagonists provide much greater protection toward deuterium exchange-in throughout the protein, suggesting that the protein-antagonist complex adopts a more restricted conformation or ensemble of conformations in which solvent accesses to amide protons are reduced. A comparison between the two antagonists shows that UVI 3003 is more protective in the C-terminal region due to the extra hydrophobic interactions derived from the atoms in the benzene ring of the carboxylic acid chain. It was less protective within regions comprising peptides 271-278 and 326-330 due to differences in conformational orientation, and/or shorter carboxylic acid chain length. Decreased deuterium exchange-in in the segment 234-239 where the residues do not involve interactions with the ligand was observed with the two antagonists, but not with 9-cis-RA. The amide protons of helix 12 of the agonist- or antagonist-occupied protein in solution have the same deuterium exchange rates as the unliganded protein, supporting a suggestion made previously that helix 12 can cover the occupied binding cavity only with the cofactor present to adjust its location.  相似文献   

10.
HX531 is a retinoid X receptor (RXR) antagonist that inhibits 9-cis retinoic acid-induced neutrophilic differentiation of HL-60 cells. In order to elucidate the inhibitory mechanism of HX531, we have developed a novel ligand sensor assay for RXR in which the receptor-coactivator interaction is directly monitored using surface plasmon resonance (SPR) biosensor technology. A 20-mer peptide from steroid receptor coactivator-1 (SRC-1), containing nuclear receptor interaction motif LXXLL was immobilized on the surface of a BIAcore sensor chip. Injection of human recombinant RXR with or without 9-cis retinoic acid resulted in ligand-dependent interaction with the SRC-1 peptide. Kinetic analysis revealed dissociation constants (KD) of 9-cis RA-preincubated RXR to SRC-1 was 5.92 x 10(-8)M. Using this technique, we found that 1 microM HX531 reduced the ka value of liganded-RXR with SRC-1, suggesting that HX531 reduced the affinity of RXR to SRC-1. This SPR assay system was applied to obtain quantitative kinetic data of RXR ligand binding to the SRC-1 peptide and the alteration of these data by antagonists.  相似文献   

11.
The role of peroxisome proliferator-activated receptor gamma (PPARgamma) in adipocyte physiology has been exploited for the treatment of diabetes. The expression of PPARgamma in lymphoid organs and its modulation of macrophage inflammatory responses, T cell proliferation and cytokine production, and B cell proliferation also implicate it in immune regulation. Despite significant human exposure to PPARgamma agonists, little is known about the consequences of PPARgamma activation in the developing immune system. Here, well-characterized models of B lymphopoiesis were used to investigate the effects of PPARgamma ligands on nontransformed pro/pre-B (BU-11) and transformed immature B (WEHI-231) cell development. Treatment of BU-11, WEHI-231, or primary bone marrow B cells with PPARgamma agonists (ciglitazone and GW347845X) resulted in rapid apoptosis. A role for PPARgamma and its dimerization partner, retinoid X receptor (RXR)alpha, in death signaling was supported by 1) the expression of RXRalpha mRNA and cytosolic PPARgamma protein, 2) agonist-induced binding of PPARgamma to a PPRE, and 3) synergistic increases in apoptosis following cotreatment with PPARgamma agonists and 9-cis-retinoic acid, an RXRalpha agonist. PPARgamma agonists activated NF-kappaB (p50, Rel A, c-Rel) binding to the upstream kappaB regulatory element site of c-myc. Only doses of agonists that induced apoptosis stimulated NF-kappaB-DNA binding. Cotreatment with 9-cis-retinoic acid and PPARgamma agonists decreased the dose required to activate NF-kappaB. These data suggest that activation of PPARgamma-RXR initiates a potent apoptotic signaling cascade in B cells, potentially through NF-kappaB activation. These results have implications for the nominal role of the PPARgamma in B cell development and for the use of PPARgamma agonists as immunomodulatory therapeutics.  相似文献   

12.
13.
14.
Although the retinoic X receptor (RXR) forms heterodimers with many members of the estrogen receptor subfamily, the interaction between RXR and the members of the glucocorticoid receptor subfamily remains unclear. Here we show that the RXR can form a heterodimer with the androgen receptor (AR) under in vitro and in vivo conditions. Functional analyses further demonstrated that the AR, in the presence or absence of androgen, can function as a repressor to suppress RXR target genes, thereby preventing the RXR binding to the RXR DNA response element. In contrast, RXR can function as a repressor to suppress AR target genes in the presence of 9-cis-retinoic acid, but unliganded RXR can function as a weak coactivator to moderately enhance AR transactivation. Together, these results not only reveal a unique interaction between members of the two nuclear receptor subfamilies, but also represent the first evidence showing a nuclear receptor (RXR) may function as either a repressor or a coactivator based on the ligand binding status.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号