首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MyD88 is an essential adaptor molecule for Toll-like receptors (TLRs) and interleukin (IL)-1 receptor. MyD88 is thought to be present as condensed forms or aggregated structures in the cytoplasm, although the reason has not yet been clear. Here, we show that endogenous MyD88 is present as small speckle-like condensed structures, formation of which depends on MyD88 dimerization. In addition, formation of large aggregated structures is related to cytoplasmic accumulation of sequestosome 1 (SQSTM1; also known as p62) and histone deacetylase 6 (HDAC6), which are involved in accumulation of polyubiquitinated proteins. A gene knockdown study revealed that SQSTM1 and HDAC6 were required for MyD88 aggregation and exhibited a suppressive effect on TLR ligand-induced expression of IL-6 and NOS2 in RAW264.7 cells. SQSTM1 and HDAC6 were partially involved in suppression of several TLR4-mediated signaling events, including activation of p38 and JNK, but they hardly affected degradation of IκBα (inhibitor of nuclear factor κB). Biochemical induction of MyD88 oligomerization induced recruitment of SQSTM1 and HDAC6 to the MyD88-TRAF6 signaling complex. Repression of SQSTM1 and HDAC6 enhanced formation of the MyD88-TRAF6 complex and conversely decreased interaction of the ubiquitin-specific negative regulator CYLD with the complex. Furthermore, ubiquitin-binding regions on SQSTM1 and HDAC6 were essential for MyD88 aggregation but were not required for interaction with the MyD88 complex. Thus, our study reveals not only that SQSTM1 and HDAC6 are important determinants of aggregated localization of MyD88 but also that MyD88 activates a machinery of polyubiquitinated protein accumulation that has a modulatory effect on MyD88-dependent signal transduction.  相似文献   

2.
Agents that extract or sequester membrane cholesterol stimulate IkappaB degradation and lead to NF-kappaB activation in a subset of B cells. Although the extraction of cholesterol by methyl-beta-cyclodextrin is the most potent stimulus of NF-kappaB, other agents that sequester cholesterol have similar effects. B cells and B cell lines with an immature phenotype are significantly more sensitive to the effects of cholesterol perturbation than their mature B cell counterparts. NF-kappaB activation does not involve signaling from the B cell receptor complex. Instead, the disruption of membrane cholesterol activates NF-kappaB through a MyD88-dependent pathway involving the pattern recognition receptor, Toll-like receptor 4. We suggest that lipid raft microdomains may serve not only to orchestrate receptor signaling, but to sequester signaling components one from one another, which serves to prevent receptor-mediated signaling from occurring. A role for this process during B cell development is suggested.  相似文献   

3.
Rhinoviral infection is an important trigger of acute inflammatory exacerbations in patients with underlying airway disease. We have previously established that interleukin-1β (IL-1β) is central in the communication between epithelial cells and monocytes during the initiation of inflammation. In this study we explored the roles of IL-1β and its signaling pathways in the responses of airway cells to rhinovirus-1B (RV-1B) and further determined how responses to RV-1B were modified in a model of bacterial coinfection. Our results revealed that IL-1β dramatically potentiated RV-1B-induced proinflammatory responses, and while monocytes did not directly amplify responses to RV-1B alone, they played an important role in the responses observed with our coinfection model. MyD88 is the essential signaling adapter for IL-1β and most Toll-like receptors. To examine the role of MyD88 in more detail, we created stable MyD88 knockdown epithelial cells using short hairpin RNA (shRNA) targeted to MyD88. We determined that IL-1β/MyD88 plays a role in regulating RV-1B replication and the inflammatory response to viral infection of airway cells. These results identify central roles for IL-1β and its signaling pathways in the production of CXCL8, a potent neutrophil chemoattractant, in viral infection. Thus, IL-1β is a viable target for controlling the neutrophilia that is often found in inflammatory airway disease and is exacerbated by viral infection of the airways.  相似文献   

4.
Calcium/calmodulin-dependent protein kinase kinase (CaMKK) and Akt are two multifunctional kinases involved in many cellular responses. Although Akt and Ca(2+) signals have been implicated in NF-kappaB activation in response to certain stimuli, these results are still controversial, and the mechanism(s) involved remains unknown. In this study, we show the roles that CaMKK and Akt play in regulating interleukin-1beta (IL-1beta)-induced NF-kappaB signaling. In human embryonic kidney 293 cells, IL-1beta induces IkappaB kinase beta (IKKbeta) activation, IkappaBalpha degradation, NF-kappaB transactivation, and weak Akt activation. A CaMKK inhibitor (KN-93) and phosphatidylinositol 3-kinase inhibitors (wortmannin and LY294002) do not inhibit IL-1beta-induced NF-kappaB activation. However, IL-1beta-induced NF-kappaB activity is attenuated by increased intracellular calcium in response to ionomycin, UTP, or thapsigargin or by overexpression of CaMKKc and/or Akt. Ionomycin and CaMKKc overexpression increases Akt phosphorylation on Thr(308) and enzyme activity. Under these conditions or upon overexpression of wild type Akt, IL-1beta-induced IKKbeta activity is diminished. Furthermore, a dominant negative mutant of Akt abolishes IKKbeta inhibition by CaMKKc and ionomycin, suggesting that Akt acts as a mediator of CaMKK signaling to inhibit IL-1beta-induced IKK activity at an upstream target site. We have also identified a novel interaction between CaMKK-stimulated Akt and interleukin-1 receptor-associated kinase 1 (IRAK1), which plays a key role in IL-1beta-induced NF-kappaB activation. CaMKKc and Akt overexpression decreases IRAK1-mediated NF-kappaB activity and its association with MyD88 in response to IL-1beta stimulation. Furthermore, CaMKKc and Akt overexpression increases IRAK1 phosphorylation at Thr(100), and point mutation of this site abrogates the inhibitory effect of Akt on IRAK1-mediated NF-kappaB activation. Taken together, these results indicate a novel regulatory mechanism for IL-1beta signaling and suggest that CaMKK-dependent Akt activation inhibits IL-1beta-induced NF-kappaB activation through interference with the coupling of IRAK1 to MyD88.  相似文献   

5.
Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2.   总被引:119,自引:0,他引:119  
A Mayeda  A R Krainer 《Cell》1992,68(2):365-375
When messenger RNA precursors (pre-mRNAs) containing alternative 5' splice sites are spliced in vitro, the relative concentrations of the heterogeneous ribonucleoprotein (hnRNP) A1 and the essential splicing factor SF2 precisely determine which 5' splice site is selected. In general, an excess of hnRNP A1 favors distal 5' splice sites, whereas an excess of SF2 results in utilization of proximal 5' splice sites. The regulation of these antagonistic activities may play an important role in the tissue-specific and developmental control of gene expression by alternative splicing.  相似文献   

6.
Regulation of apoptosis by alternative pre-mRNA splicing   总被引:2,自引:0,他引:2  
Apoptosis, a phenomenon that allows the regulated destruction and disposal of damaged or unwanted cells, is common to many cellular processes in multicellular organisms. In humans more than 200 proteins are involved in apoptosis, many of which are dysregulated or defective in human diseases including cancer. A large number of apoptotic factors are regulated via alternative splicing, a process that allows for the production of discrete protein isoforms with often distinct functions from a common mRNA precursor. The abundance of apoptosis genes that are alternatively spliced and the often antagonistic roles of the generated protein isoforms strongly imply that alternative splicing is a crucial mechanism for regulating life and death decisions. Importantly, modulation of isoform production of cell death proteins via pharmaceutical manipulation of alternative splicing may open up new therapeutic avenues for the treatment of disease.  相似文献   

7.
8.
Regulation of alternative splicing by reversible protein phosphorylation   总被引:3,自引:0,他引:3  
The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a "splicing" or "messenger ribonucleoprotein code" that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites.  相似文献   

9.
10.
11.
12.
Nitric oxide (NO) produced by macrophages plays an important role in host defense and inflammation. We found that two agrochemicals, alachlor and carbaryl, inhibit lipopolysaccharide (LPS)-induced NO production by macrophages. In the present study, we investigated this inhibitory mechanism in RAW 264 cells. Both chemicals inhibited LPS-induced iNOS protein and mRNA expression as well as murine iNOS promoter activity. When treating these chemicals with reducing agents, the inhibition by carbaryl was reversed, but not the inhibition by alachlor. These chemicals also inhibited LPS-induced interferon-beta (IFN-beta) expression, an indispensable factor for LPS-induced iNOS expression. The inhibited iNOS expression, however, was not restored by exogenous IFN-beta supplementation. LPS-induced nuclear translocation of NF-kappaB, which is necessary for the expression of IFN-beta and iNOS, was inhibited by these chemicals: however, the LPS-induced degradation of IkappaB-alpha and IkappaB-beta was inhibited only by alachlor. These results indicate that alachlor and carbaryl differentially impair the LPS-induced NF-kappaB activation, leading to the inhibition of NO production.  相似文献   

13.
Neurofibromatosis type 1 (NF1) is one of the most common heritable autosomal dominant disorders. Alternative splicing modulates the function of neurofibromin, the NF1 gene product, by inserting the in-frame exon 23a into the region of NF1 mRNA that encodes the GTPase-activating protein-related domain. This insertion, which is predominantly skipped in neurons, reduces the ability of neurofibromin to regulate Ras by 10-fold. Here, we report that the neuron-specific Hu proteins control the production of the short protein isoform by suppressing inclusion of NF1 exon 23a, while TIA-1/TIAR proteins promote inclusion of this exon. We identify two binding sites for Hu proteins, located upstream and downstream of the regulated exon, and provide biochemical evidence that Hu proteins specifically block exon definition by preventing binding of essential splicing factors. In vitro analyses using nuclear extracts show that at the downstream site, Hu proteins prevent binding of U1 and U6 snRNPs to the 5′ splice site, while TIAR increases binding. Hu proteins also decrease U2AF binding at the 3′ splice site located upstream of exon 23a. In addition to providing the first mechanistic insight into tissue-specific control of NF1 splicing, these studies establish a novel strategy whereby Hu proteins regulate RNA processing.  相似文献   

14.
Immune activation is a major characteristic of human immunodeficiency virus type 1 (HIV-1) infection and a strong prognostic factor for HIV-1 disease progression. The underlying mechanisms leading to immune activation in viremic HIV-1 infection, however, are not fully understood. Here we show that, following the initiation of highly active antiretroviral therapy, the immediate decline of immune activation is closely associated with the reduction of HIV-1 viremia, which suggests a direct contribution of HIV-1 itself to immune activation. To propose a mechanism, we demonstrate that the single-stranded RNA of HIV-1 encodes multiple uridine-rich Toll-like receptor 7/8 (TLR7/8) ligands that induce strong MyD88-dependent plasmacytoid dendritic cell and monocyte activation, as well as accessory cell-dependent T-cell activation. HIV-1-encoded TLR ligands may, therefore, directly contribute to the immune activation observed during viremic HIV-1 infection. These data provide an initial rationale for inhibiting the TLR pathway to directly reduce the chronic immune activation induced by HIV-1 and the associated immune pathogenesis.  相似文献   

15.
16.
Guanylyl cyclase-B (GC-B) is a single transmembrane receptor that binds C-type natriuretic peptide (CNP). The ligand/receptor appears critical in the regulation of cell proliferation and differentiation where it acts as an adversary of mitogenic signaling pathways. We have isolated three guanylyl cyclase-B isoforms generated from a single gene by alternative splicing and termed them GC-B1, GC-B2, and GC-B3. GC-B1 is full-length and responds maximally to CNP, GC-B2 contains a 25-amino acid deletion in the protein kinase homology domain, and GC-B3 only retains a part of the extracellular ligand-binding domain. GC-B2 binds CNP, but the ligand fails to activate the cyclase, while GC-B3 fails to bind ligand. When GC-B2 or GC-B3 is expressed coincident with GC-B1, they act as dominant negative isoforms by virtue of blocking formation of active GC-B1 homodimers. Relative expression levels of GC-B1, GC-B2, and GC-B3 vary across tissues and as a function of in vitro culture; the relative amount of GC-B2 to GC-B1 is repressed in cultured smooth muscle cells relative to endogenous ratios in the medial layer cells of the aorta. Thus, GC-B isoform levels can be independently regulated. Given that the splice variants serve as dominant negative forms, these will serve as regulators of the full-length GC-B.  相似文献   

17.
Epigallocatechin-3-gallate (EGCG) and ibuprofen synergistically act to suppress proliferation and enhance apoptosis of prostate cancer cell lines, PC-3 and LNCaP. The purpose of this study was to investigate the mechanism of underlying this synergism. Most interestingly, EGCG + ibuprofen treatment in PC-3 cells resulted in altering the ratio of the splice variants of Bcl-X and Mcl-1, downregulating the mRNA levels of anti-apoptotic Bcl-X(L) and Mcl-1(L) with a concomitant increase in the mRNA levels of pro-apoptotic Bcl-X(s) and Mcl-1(s). However, there were no apparent changes in splicing variants in either ibuprofen or EGCG treated cells. Induction of alternative splicing was correlated with increased activity of protein phosphatase 1 (PP1) in EGCG + ibuprofen-treated cells, since pretreatment with calyculin A and tautomycin blocked EGCG + ibuprofen-induced alternative splicing in PC-3 cells in contrast to pretreatment with okadaic acid. On the other hand, EGCG + ibuprofen treatment in LNCaP cells did not alter splicing variants of Bcl-X and Mcl-1, despite the increase in protein phosphatase activity. In both cell lines, EGCG + ibuprofen inhibited cell proliferation synergistically. Taken together, this study demonstrate for the first time that EGCG + ibuprofen upregulated PP1 activity, which in turn induced alternative splicing of Bcl-X and Mcl-1 in a cell-type specific manner. Our study also demonstrates that the activation of PP1 contributes to the alternative splicing of Mcl-1.  相似文献   

18.
RBFOX1 and RBFOX2 are alternative splicing factors that are predominantly expressed in the brain and skeletal muscle. They specifically bind the RNA element UGCAUG, and regulate alternative splicing positively or negatively in a position-dependent manner. The molecular basis for the position dependence of these and other splicing factors on alternative splicing of their targets is not known. We explored the mechanisms of RBFOX splicing activation and repression using an MS2-tethering assay. We found that the Ala/Tyr/Gly-rich C-terminal domain is sufficient for exon activation when tethered to the downstream intron, whereas both the C-terminal domain and the central RRM are required for exon repression when tethered to the upstream intron. Using immunoprecipitation and mass spectrometry, we identified hnRNP H1, RALY, and TFG as proteins that specifically interact with the C-terminal domain of RBFOX1 and RBFOX2. RNA interference experiments showed that hnRNP H1 and TFG modulate the splicing activity of RBFOX1/2, whereas RALY had no effect. However, TFG is localized in the cytoplasm, and likely modulates alternative splicing indirectly.  相似文献   

19.
Acute cigarette smoke exposure of the airways (two cigarettes twice daily for three days) induces acute inflammation in mice. In this study, we show that airway inflammation is dependent on Toll-like receptor 4 and IL-1R1 signaling. Cigarette smoke induced a significant recruitment of neutrophils in the bronchoalveolar space and pulmonary parenchyma, which was reduced in TLR4-, MyD88-, and IL-1R1-deficient mice. Diminished neutrophil influx was associated with reduced IL-1, IL-6, and keratinocyte-derived chemokine levels and matrix metalloproteinase-9 activity in the bronchoalveolar space. Further, cigarette smoke condensate (CSC) induced a macrophage proinflammatory response in vitro, which was dependent on MyD88, IL-1R1, and TLR4 signaling, but not attributable to LPS. Heat shock protein 70, a known TLR4 agonist, was induced in the airways upon smoke exposure, which probably activates the innate immune system via TLR4/MyD88, resulting in airway inflammation. CSC-activated macrophages released mature IL-1beta only in presence of ATP, whereas CSC alone promoted the TLR4/MyD88 signaling dependent production of IL-1alpha and pro-IL-1beta implicating cooperation between TLRs and the inflammasome. In conclusion, acute cigarette exposure results in LPS-independent TLR4 activation, leading to IL-1 production and IL-1R1 signaling, which is crucial for cigarette smoke induced inflammation leading to chronic obstructive pulmonary disease with emphysema.  相似文献   

20.
In cultured rat vascular smooth muscle cells, sustained activation of ERK is required for interleukin-1beta to persistently activate NF-kappaB. Without ERK activation, interleukin-1beta induces only acute and transient NF-kappaB activation. The present study examined whether the temporal control of NF-kappaB activation by ERK could differentially regulate the expression of NF-kappaB-dependent genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), vascular cell adhesion molecule-1 (VCAM-1), and manganese-containing superoxide dismutase (Mn-SOD). Treatment of vascular smooth muscle cells with interleukin-1beta induced the expression of iNOS, COX-2, VCAM-1, and Mn-SOD in a time-dependent manner, but with different patterns. Either PD98059 or U0126, selective inhibitors of MEK, or overexpression of a dominant negative MEK-1 inhibited interleukin-1beta- induced ERK activation and the expression of iNOS and COX-2 but had essentially no effect on the expression of VCAM-1 and Mn-SOD. The expression of these genes was inhibited when NF-kappaB activation was down-regulated by MG132, a proteasome inhibitor, or by overexpression of an I-kappaBalpha mutant that prevented both the transient and the persistent activation of NF-kappaB. Inhibition of ERK did not affect interleukin-1beta-induced I-kappaBalpha phosphorylation and degradation but attenuated I-kappaBbeta degradation. Thus, although NF-kappaB activation was essential for interleukin-1beta induction of each of the proteins studied, gene expression was differentially regulated by ERK and by the duration of NF-kappaB activation. These results reveal a novel functional role for ERK as an important temporal regulator of NF-kappaB activation and NF-kappaB-dependent gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号