首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ribosomal protein L9 (RPL9), a component of the large subunit of the ribosome, has an unusual structure, comprising two compact globular domains connected by an α-helix; it interacts with 23 S rRNA. To obtain information about rpL9 of Ailuropoda melanoleuca (the giant panda) we designed primers based on the known mammalian nucleotide sequence. RT-PCR and PCR strategies were employed to isolate cDNA and the rpL9 gene from A. melanoleuca; these were sequenced and analyzed. We overexpressed cDNA of the rpL9 gene in Escherichia coli BL21. The cloned cDNA fragment was 627 bp in length, containing an open reading frame of 579 bp. The deduced protein is composed of 192 amino acids, with an estimated molecular mass of 21.86 kDa and an isoelectric point of 10.36. The length of the genomic sequence is 3807 bp, including six exons and five introns. Based on alignment analysis, rpL9 has high similarity among species; we found 85% agreement of DNA and amino acid sequences with the other species that have been analyzed. Based on topology predictions, there are two N-glycosylation sites, five protein kinase C phosphorylation sites, one casein kinase II phosphorylation site, two tyrosine kinase phosphorylation sites, three N-myristoylation sites, one amidation site, and one ribosomal protein L6 signature 2 in the L9 protein of A. melanoleuca. The rpL9 gene can be readily expressed in E. coli; it fuses with the N-terminal GST-tagged protein, giving rise to the accumulation of an expected 26.51-kDa polypeptide, which is in good agreement with the predicted molecular weight. This expression product could be used for purification and further study of its function.  相似文献   

2.
Several ribosomal protein families contain paralogues whose roles may be equivalent or specialized to include extra-ribosomal functions. RpL22e family members rpL22 and rpL22-like are differentially expressed in Drosophila melanogaster: rpL22-like mRNA is gonad specific whereas rpL22 is expressed ubiquitously, suggesting distinctive paralogue functions. To determine if RpL22-like has a divergent role in gonads, rpL22-like expression was analysed by qRT-PCR and western blots, respectively, showing enrichment of rpL22-like mRNA and a 34 kDa (predicted) protein in testis, but not in ovary. Immunohistochemistry of the reproductive tract corroborated testis-specific expression. RpL22-like detection in 80S/polysome fractions from males establishes a role for this tissue-specific paralogue as a ribosomal component. Unpredictably, expression profiles revealed a low abundant, alternative mRNA variant (designated 'rpL22-like short') that would encode a novel protein lacking the C-terminal ribosomal protein signature but retaining part of the N-terminal domain. This variant results from splicing of a retained intron (defined by non-canonical splice sites) within rpL22-like mRNA. Polysome association and detection of a low abundant 13.5 kDa (predicted) protein in testis extracts suggests variant mRNA translation. Collectively, our data show that alternative splicing of rpL22-like generates structurally distinct protein products: ribosomal component RpL22-like and a novel protein with a role distinct from RpL22-like.  相似文献   

3.
Binding sites of rat liver 5S RNA to ribosomal protein L5   总被引:2,自引:0,他引:2  
The ribonucleoprotein complex consisting of 5S RNA and the protein L5 was prepared from the large subunit of rat liver ribosomes. The RNA in the complex was digested in situ with RNase A or RNase T1. The RNase-resistant RNA fragments bound to the protein were recovered and purified by 2D-PAGE, and their nucleotide sequences were determined in order to elucidate the binding sites of the RNA to the protein. The results showed that the fragments had arisen from the 5'-end region (residues 1-21), from the second hairpin loop (residues 77-102) and from the 3'-end region (residues 106-120). Harsher digestion trimmed these fragments to shorter fragments. It was concluded that the minimal interactive sequences of 5S RNA to the protein L5 were residues 13-21, residues 85-102, and residues 106-114. A part of the first hairpin loop, residues 41-52, was also suspected to interact with the protein. These protein-binding sites of rat liver 5S RNA were compared with those of Escherichia coli, Halobacterium cutirubrum and yeast, and their probable conservation from eubacteria to eukaryotes is discussed.  相似文献   

4.
5.
6.
7.
8.
The use of cytosine analogue--5-Azacytidine(5AzaC), derepression of ribosomal genes has been studied in one of organising chromosomes in the African green monkey RAMT cell line in which the nucleolar organizer region (NOR) in parental cells was active. The effect of 5AzaC on the functional state of NOR was assessed by the length of the secondary constriction in this chromosome and by the intensity of Ag-staining of NOR. 5AzaC was added to the cell culture at concentrations 2-16 M, either immediately after the cell passage or at the 24th h from the beginning of cell cultivation for the following 17-34 hours. As a control the cells cultivated in the absence of 5AzaC were used. Comparison of control cells with those treated with 5AzaC showed: 1) increase of the length of the second constriction in the chromosome with the initial inactive NOR in the 5AzaC--treated cells; 2) a marked increase of the intensity of NOR's Ag-staining in the same chromosome after incorporation of 5-AzaC into DNA. The conclusion about the methylation of cytosine bases in the DNA of ribosomal genes in one NOR organising chromosomes in RAMT cell line was made.  相似文献   

9.
We studied the pathway of 5S RNA during oogenesis in Xenopus laevis from its storage in the cytoplasm to accumulation in the nucleus, the sequence requirements for the 5S RNA to follow that pathway, and the 5S RNA-protein interactions that occur during the mobilization of stored 5S RNA for assembly into ribosomes. In situ hybridization to sections of oocytes indicates that 5S RNA first becomes associated with the amplified nucleoli during vitellogenesis when the nucleoli are activity synthesizing ribosomal RNA and assembling ribosomes. When labeled 5S RNA is microinjected into the cytoplasm of stage V oocytes, it migrates into the nucleus, whether microinjected naked or complexed with the protein TFIIIA as a 7S RNP storage particle. During vitellogenesis, a nonribosome bound pool of 5S RNA complexed with ribosomal protein L5 (5S RNPs) is formed, which is present throughout the remainder of oogenesis. Immunoprecipitation assays on homogenates of microinjected oocytes showed that labeled 5S RNA can become complexed either with L5 or with TFIIIA. Nucleotides 11 through 108 of the 5S RNA molecule provide the necessary sequence and conformational information required for the formation of immunologically detectable complexes with TFIIIA or L5 and for nuclear accumulation. Furthermore, labeled 5S RNA from microinjected 7S RNPs can subsequently become associated with L5. Such labeled 5S RNA is found in both 5S RNPs and 7S RNPs in the cytoplasm, but only in 5S RNPs in the nucleus of microinjected oocytes. These data suggest that during oogenesis a major pathway for incorporation of 5S RNA into nascent ribosomes involves the migration of 5S RNA from the nucleus to the cytoplasm for storage in an RNP complex with TFIIIA, exchange of that protein association for binding with ribosomal protein L5, and a return to the nucleus for incorporation into ribosomes as they are being assembled in the amplified nucleoli.  相似文献   

10.
Iben JR  Draper DE 《Biochemistry》2008,47(9):2721-2731
Large ribosomal subunit proteins L10 and L12 form a pentameric protein complex, L10(L12) 4, that is intimately involved in the ribosome elongation cycle. Its contacts with rRNA or other ribosomal proteins have been only partially resolved by crystallography. In Escherichia coli, L10 and L12 are encoded from a single operon for which L10(L12) 4 is a translational repressor that recognizes a secondary structure in the mRNA leader. In this study, L10(L12) 4 was expressed from the moderate thermophile Bacillus stearothermophilus to quantitatively compare strategies for binding of the complex to mRNA and ribosome targets. The minimal mRNA recognition structure is widely distributed among bacteria and has the potential to form a kink-turn structure similar to one identified in the rRNA as part of the L10(L12) 4 binding site. Mutations in equivalent positions between the two sequences have similar effects on L10(L12) 4-RNA binding affinity and identify the kink-turn motif and a loop AA sequence as important recognition elements. In contrast to the larger rRNA structure, the mRNA apparently positions the kink-turn motif and loop for protein recognition without the benefit of Mg (2+)-dependent tertiary structure. The mRNA and rRNA fragments bind L10(L12) 4 with similar affinity ( approximately 10 (8) M (-1)), but fluorescence binding studies show that a nearby protein in the ribosome, L11, enhances L10(L12) 4 binding approximately 100-fold. Thus, mRNA and ribosome targets use similar RNA features, held in different structural contexts, to recognize L10(L12) 4, and the ribosome ensures the saturation of its L10(L12) 4 binding site by means of an additional protein-protein interaction.  相似文献   

11.
Ribosomal protein L5, a 5S rRNA binding protein in the large subunit, is composed of a five-stranded antiparallel beta-sheet and four alpha-helices, and folds in a way that is topologically similar to the ribonucleprotein (RNP) domain [Nakashima et al., RNA 7, 692-701, 20011. The crystal structure of ribosomal protein L5 (BstL5) from Bacillus stearothermophilus suggests that a concave surface formed by an anti-parallel beta-sheet and long loop structures are strongly involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurred at beta-strands and loop structures in BstL5. The mutation of Lys33 at the beta 1-strand caused a significant reduction in 5S rRNA binding. In addition, the Arg92, Phe122, and Glu134 mutations on the beta2-strand, the alpha3-beta4 loop, and the beta4-beta5 loop, respectively, resulted in a moderate decrease in the 5S rRNA binding affinity. In contrast, mutation of the conserved residue Pro65 at the beta2-strand had little effect on the 5S rRNA binding activity. These results, taken together with previous results, identified Lys33, Asn37, Gln63, and Thr90 on the beta-sheet structure, and Phe77 at the beta2-beta3 loop as critical residues for the 5S rRNA binding. The contribution of these amino acids to 5S rRNA binding was further quantitatively evaluated by surface plasmon resonance (SPR) analysis by the use of BIAcore. The results showed that the amino acids on the beta-sheet structure are required to decrease the dissociation rate constant for the BstL5-5S rRNA complex, while those on the loops are to increase the association rate constant for the BstL5-5S rRNA interaction.  相似文献   

12.
Yang H  Henning D  Valdez BC 《The FEBS journal》2005,272(15):3788-3802
RNA helicase II/Gu(alpha) is a multifunctional nucleolar protein involved in ribosomal RNA processing in Xenopus laevis oocytes and mammalian cells. Downregulation of Gu(alpha) using small interfering RNA (siRNA) in HeLa cells resulted in 80% inhibition of both 18S and 28S rRNA production. The mechanisms underlying this effect remain unclear. Here we show that in mammalian cells, Gu(alpha) physically interacts with ribosomal protein L4 (RPL4), a component of 60S ribosome large subunit. The ATPase activity of Gu(alpha) is important for this interaction and is also necessary for the function of Gu(alpha) in the production of both 18S and 28S rRNAs. Knocking down RPL4 expression using siRNA in mouse LAP3 cells inhibits the production of 47/45S, 32S, 28S, and 18S rRNAs. This inhibition is reversed by exogenous expression of wild-type human RPL4 protein but not the mutant form lacking Gu(alpha)-interacting motif. These observations have suggested that the function of Gu(alpha) in rRNA processing is at least partially dependent on its ability to interact with RPL4.  相似文献   

13.
Functional ribosomes synthesize proteins in all living cells and are composed of two labile associated subunits, which are made of rRNA and ribosomal proteins. The rRNA of the small 40S subunit (SSU) of the functional eukaryotic 80S ribosome decodes the mRNA molecule and the large 60S subunit (LSU) rRNA catalyzes protein synthesis. Recent fine structure determinations of the ribosome renewed interest in the role of ribosomal proteins in modulation of the core ribosomal functions. RpL10/Grc5p is a component of the LSU and is a multifunctional translational regulator, operating in 60S subunit biogenesis, 60S subunit export and 60S subunit joining with the 40S subunit. Here, we report that rpL10/Grc5p functionally interacts with the nuclear export factor Nmd3p in modulation of the cellular polysome complement and with the small subunit protein rpS6 in subunit joining and differential protein expression.  相似文献   

14.
《FEMS yeast research》2005,5(3):271-280
Functional ribosomes synthesize proteins in all living cells and are composed of two labile associated subunits, which are made of rRNA and ribosomal proteins. The rRNA of the small 40S subunit (SSU) of the functional eukaryotic 80S ribosome decodes the mRNA molecule and the large 60S subunit (LSU) rRNA catalyzes protein synthesis. Recent fine structure determinations of the ribosome renewed interest in the role of ribosomal proteins in modulation of the core ribosomal functions. RpL10/Grc5p is a component of the LSU and is a multifunctional translational regulator, operating in 60S subunit biogenesis, 60S subunit export and 60S subunit joining with the 40S subunit. Here, we report that rpL10/Grc5p functionally interacts with the nuclear export factor Nmd3p in modulation of the cellular polysome complement and with the small subunit protein rpS6 in subunit joining and differential protein expression.  相似文献   

15.
16.
The amino acid sequence of the rat 40 S ribosomal subunit protein S5 was deduced from the sequence of nucleotides in a recombinant cDNA and confirmed by the determination, directly from the protein, of 17 residues near the NH2 terminus. S5 has 204 amino acids; the molecular weight is 22,863. The protein designated S5a has the same amino acid sequence as S5 except that it lacks the NH2-terminal 5 residues. It is not known whether the conversion of a portion of S5 to S5a is physiological or fortuitous. The mRNA for S5 has about 820 nucleotides. Hybridization of the S5 cDNA to digests of nuclear DNA indicates that the rat genome has only a single copy of the gene; this is in distinction to the mouse and human genomes which have three to six copies of the S5 gene. Rat ribosomal protein S5 is related to the eubacteria, the arachaebacteria, and the chloroplast family of S7 ribosomal proteins. There is a peptide of 16 residues at the carboxyl terminus of S5 that is highly conserved in 18 species spanning the three kingdoms and chloroplasts.  相似文献   

17.
18.
The aim of this study was to analyze the functional importance of the C-terminus of the essential yeast ribosomal protein L5 (YrpL5). Previous studies have indicated that the C-terminal region of YrpL5 forms an alpha-helix with a positively charged surface that is involved in protein-5S rRNA interaction. Formation of an YrpL5.5S rRNA complex is a prerequisite for nuclear import of YrpL5. Here we have tested the importance of the alpha-helix and the positively charged surface for YrpL5 function in Saccharomyces cerevisiae using site directed mutagenesis in combination with functional complementation. Alterations in the sequence forming the putative alpha-helix affected the functional capacity of YrpL5. However, the effect did not correlate with a decreased ability of the protein to bind to 5S rRNA as all rpL5 mutants tested were imported to the nucleus whether or not the alpha-helix or the positively charged surface were intact. The alterations introduced in the C-terminal sequence affected the growth rate of cells expressing mutant but functional forms of YrpL5. The reduced growth rate was correlated with a reduced ribosomal content per cell indicating that the alterations introduced in the C-terminus interfered with ribosome assembly.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号