首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One function of Alzheimer amyloid protein precursor (APP) is the regulation of growth and differentiation in several types of cells, including fibroblasts, PC12 cells, and neurons. This activity is represented by a small stretch of amino acids in the center of the molecule around RERMS. The APP 17-mer peptide containing the RERMS domain supported survival and neurite extension of rat cortical neurons in a dose-dependent and sequence-specific manner. The APP fragment synthesized in Escherichia coli supported the survival and neurite extension of rat cortical neurons, whereas the mutant APP fragment lacking the 30 amino acids around the RERMS domain had drastically reduced activity to support the survival and neurite extension. The current study established APP as a neuron survival factor and determined that the sequence around RERMS is important for this function. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The secreted form of Alzheimer amyloid beta/A4 protein precursor (APP) has been shown to be involved in cell growth regulation (Saitoh, T., Sundsmo, M., Roch, J.-M., Kimura, N., Cole, G., Schubert, D., Oltersdorf, T., and Schenk, D.B. (1989) Cell 58, 615-622). Using a strong prokaryotic expression system, we expressed, in Escherichia coli, peptide fragments covering different regions of the secreted form of APP-695. The longest of these fragments (KB75, 572 amino acids from Val-20 to Ile-591), which contained neither the Kunitz-type protease inhibitor (KPI) domain nor the amyloid beta/A4-protein domain, was purified and shown to be biologically active in terms of growth regulation. Two other APP fragments (KB48, 316 amino acids from Val-20 to Met-335; and RB17, 150 amino acids from Thr-296 to Pro-445), overlapping by only 40 amino acids at a close site C-terminal to the KPI insertion site, were also active. Furthermore, a chemically synthesized 40-residue peptide corresponding to this region of overlap also stimulated the growth of A-1 fibroblasts. These results establish the presence of growth-promoting activity in the secreted form of APP-695 and suggest that the site of this activity of APP-695 lies within a 40-amino acid domain next to the KPI insertion site.  相似文献   

3.
The amyloid precursor protein (APP) is well known for giving rise to the amyloid-β peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα(695) (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα(695) binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα(695) inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (K(d)≤8·10(-9) M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins.  相似文献   

4.
APP N端片段的神经营养作用   总被引:6,自引:0,他引:6  
APP是β-淀粉样肽的前体蛋白,由695-770个氨基酸经,春N端水解产物可分沁至细胞外环境。AP具有促进神经细胞生长作用,其中319-335肽段即APP17肽能提高动物的学习记忆能力。其他APP片段是否具有神经营养功能未见报道。本研究通过观察APP N端片段对人神经母细胞瘤株SY5Y生长的影响以及对实验性糖尿病动物行为的影响,希望APP促进神经细胞生长的其他肽段。用化学合肥APP N端多肽片段,以SY5Y细胞MTT代谢率、细胞计数、LDH漏出率和实验性糖尿病小鼠水迷宫试验结果为观察指标。结果APP64肽、29肽、11肽均有促进SY5Y细胞生长的作用,APP11肽可提高糖尿病动物水迷宫测试成绩,说明可溶性APP的N端可能具有神经营养作用,我们认为保持此作用的最短片段为APP11肽,此肽段的发现为进一步研究APP的构效关系奠定了基础。  相似文献   

5.
We have expressed two forms of the Alzheimer's beta-amyloid precursor protein (beta APP), the 695-amino acid form (695 beta APP), and the 751-amino acid form (751 beta APP) in a baculovirus system. Both forms were expressed as full-length precursor, and were subsequently processed in vivo to release extracellular secreted proteins. The secreted forms were cleaved from the full-length beta APP in a manner analogous to the cleavage of beta APP during constitutive secretion in mammalian cells (Weidemann, A., K?nig, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C. L., Beyreuther, K. (1989) Cell 57, 115-126; Oltersdorf, T., Ward, P. J., Henriksson, T., Beattie, E. C., Neve, R., Lieberburg, I., and Fritz, L. J. (1990) J. Biol. Chem. 265, 4492-4497). High levels of expression of 20-50 mg/liter were achieved. Both full-length and secreted forms of the beta-amyloid precursor proteins were purified using a combination of ion-exchange and immunoaffinity chromatography using a monoclonal antibody directed against beta APP. The 751 beta APP-derived full-length and secreted forms, which contain the Kunitz protease inhibitor domain, were shown to be as active in the inhibition of trypsin as is mammalian-derived secreted beta APP. The availability of purified full-length beta APP from the baculovirus system will be valuable for biochemical and cell biological analyses that may elucidate the mechanism of the inappropriate processing that leads to beta-amyloid formation in Alzheimer's disease.  相似文献   

6.
γ-Secretase is a multiprotein intramembrane cleaving aspartyl protease (I-CLiP) that catalyzes the final cleavage of the amyloid β precursor protein (APP) to release the amyloid β peptide (Aβ). Aβ is the primary component of senile plaques in Alzheimer's disease (AD), and its mechanism of production has been studied intensely. γ-Secretase executes multiple cleavages within the transmembrane domain of APP, with cleavages producing Aβ and the APP intracellular domain (AICD), referred to as γ and ε, respectively. The heterogeneous nature of the γ cleavage that produces various Aβ peptides is highly relevant to AD, as increased production of Aβ 1-42 is genetically and biochemically linked to the development of AD. We have identified an amino acid in the juxtamembrane region of APP, lysine 624, on the basis of APP695 numbering (position 28 relative to Aβ) that plays a critical role in determining the final length of Aβ peptides released by γ-secretase. Mutation of this lysine to alanine (K28A) shifts the primary site of γ-secretase cleavage from 1-40 to 1-33 without significant changes to ε cleavage. These results further support a model where ε cleavage occurs first, followed by sequential proteolysis of the remaining transmembrane fragment, but extend these observations by demonstrating that charged residues at the luminal boundary of the APP transmembrane domain limit processivity of γ-secretase.  相似文献   

7.
8.
9.
Amyloid β-precursor protein (APP) is primarily cleaved by α- or β-secretase to generate membrane-bound, C-terminal fragments (CTFs). In turn, CTFs are potentially subject to a second, intramembrane cleavage by γ-secretase, which is active in a lipid raft-like membrane microdomain. Mature APP (N- and O-glycosylated APP), the actual substrate of these secretases, is phosphorylated at the cytoplasmic residue Thr(668) and this phosphorylation changes the overall conformation of the cytoplasmic domain of APP. We found that phosphorylated and nonphosphorylated CTFs exist equally in mouse brain and are kinetically equivalent as substrates for γ-secretase, in vitro. However, in vivo, the level of the phosphorylated APP intracellular domain peptide (pAICD) generated by γ-cleavage of CTFs was very low when compared with the level of nonphosphorylated AICD (nAICD). Phosphorylated CTFs (pCTFs), rather than nonphosphorylated CTFs (nCTFs), were preferentially located outside of detergent-resistant, lipid raft-like membrane microdomains. The APP cytoplasmic domain peptide (APP(648-695)) with Thr(P)(668) did not associate with liposomes composed of membrane lipids from mouse brain to which the nonphosphorylated peptide preferentially bound. In addition, APP lacking the C-terminal 8 amino acids (APP-ΔC8), which are essential for membrane association, decreased Aβ generation in N2a cells. These observations suggest that the pCTFs and CTFΔC8 are relatively movable within the membrane, whereas the nCTFs are susceptible to being anchored into the membrane, an interaction made available as a consequence of not being phosphorylated. By this mechanism, nCTFs can be preferentially captured and cleaved by γ-secretase. Preservation of the phosphorylated state of APP-CTFs may be a potential treatment to lower the generation of Aβ in Alzheimer disease.  相似文献   

10.
The beta-amyloid peptide (A beta), the major component of the senile plaques found in the brains of Alzheimer's disease patients, is derived from proteolytic processing of a transmembrane glycoprotein known as the amyloid precursor protein (APP). Human APP exists in various isoforms, of which the major ones contain 695, 751, and 770 amino acids. Proteolytic cleavage of APP by alpha- or beta-secretases releases the extracellular soluble fragments sAPP alpha or sAPP beta, respectively. Despite the fact that sAPP alpha plays important roles in both physiological and pathological processes in the brain, very little is known about its structure and stability. We have recently presented a structural model of sAPP alpha 695 obtained from small-angle x-ray scattering measurements (Gralle, M., Botelho, M. M., Oliveira, C. L. P., Torriani, I., and Ferreira, S. T. (2002) Biophys. J. 83, 3513-3524). We now report studies on the folding and stabilities of sAPP alpha 695 and sAPP alpha 770. The combined use of intrinsic fluorescence, 4-4'-Dianilino-1,1'binaphthyl-5,5'-disulfonic acid (bis-ANS) fluorescence, circular dichroism, differential ultraviolet absorption, and small-angle x-ray scattering measurements of the equilibrium unfolding of sAPP alpha 695 and sAPP alpha 770 by GdnHCl and urea revealed multistep folding pathways for both sAPP alpha isoforms. Such stepwise folding processes may be related to the identification of distinct structural domains in the three-dimensional model of sAPP alpha. Furthermore, the relatively low stability of the native state of sAPP alpha suggests that conformational plasticity may play a role in allowing APP to interact with a number of distinct physiological ligands.  相似文献   

11.
Clonal central nervous system neuronal cells, B103, do not synthesize detectable endogenous APP or APLP. B103 cells transfected with both wild-type (B103/APP) and mutant APP construct (B103/APPΔNL) secreted comparable amounts of soluble forms of APP (sAPP). B103/APP cells produced sAPP and cleaved at amyloid β/A4 (Aβ) 16, the α-secretase site, and B103/APPΔNL cells produced sAPPβ cleaved at Aβ 1, the β-secretase site. B103/APPΔNL cells developed fewer neurites than B103/APP cells in a serum-free defined medium. Neurite numbers of parent B103 cells were increased by the 50% conditioned medium (CM) from B103/APP cells but reduced by the CM from B103/APPΔNL cells. Chemically synthesized Aβ at concentration levels higher than 1 nM reduced numbers of neurites from B103 or B103/APPΔNL cells. However, Aβ at 1–100 nM could not reduce the neurite number of B103/APP cells. The protective activity against Aβ's deleterious effect to reduce neurite numbers was attributed to sAPPα in the CM. Although sAPPα could block the effect of Aβ, sAPPβ could not do so under the identical condition, suggesting the importance of the C-terminal 15-amino acid sequence in sAPPα. Nevertheless, sAPPα's protective activity required the N-terminal sequence around RERMS, previously identified to be the active domain of sAPPβ. The overall effect of APP mutation which overproduced Aβ and sAPPβ and underproduced sAPPα was a marked decline in the neurotrophic effect of APP. We suggest that the disruption of balance between the detrimental effect of Aβ and the trophic effect of sAPP may be important in the pathogenesis of AD caused by this pathogenic APP mutation © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 469–480, 1997  相似文献   

12.
13.
Upon activation, platelets secrete a 120-kDa protein that competes for the binding and internalization of acetyl low density lipoproteins (AcLDL) by macrophages. From the amino-terminal amino acid sequence, amino acid composition, and immunoblot analysis, we identified the active factor in platelet secretion products as sAPP, an alpha-secretase cleavage product of the beta-amyloid precursor protein (APP), that contains a Kunitz-type protease inhibitor (KPI) domain. We showed that both sAPP751 (also called Nexin II) and sAPP695, which does not contain a KPI domain, are ligands for the class A scavenger receptor (SR-A). Chinese hamster ovary cells stably transfected to express the SR-A bound and internalized 4-fold more human platelet-derived sAPP than control cells. The binding and internalization of sAPP were inhibited by the SR-A antagonist fucoidin. In addition, sAPP competed as effectively as fucoidin for SR-A-mediated cell association and degradation of (125)I-AcLDL. To determine if the KPI domain is required for the binding of sAPP to the SR-A, APP751 and APP695 were expressed in Chinese hamster ovary cells, and sAPP751 and sAPP695 purified from the medium were tested for their binding to the SR-A. sAPP751 and sAPP695 were equally effective in competing for the cell association of (125)I-AcLDL by SR-A-expressing cells, demonstrating that the KPI domain is not essential for binding. We also found that sAPP751 is present in extracts of atherosclerotic lesions and that sAPP competes for the SR-A-mediated cell association of oxidized low density lipoprotein. Deletion mutagenesis indicated that a negatively charged region of APP (residues 191-264) contributes to binding to the SR-A. These results suggest that the SR-A contributes to the clearance of sAPP and that sAPP competes for the cell association of other SR-A ligands.  相似文献   

14.
The extracellular domain of beta-amyloid precursor protein (APP) contains an inhibitor against matrix metalloproteinase-2 (MMP-2, gelatinase A). Our previous study ( Higashi, S. and Miyazaki, K. (2003) J Biol Chem 278, 14020-14028 ) demonstrated that the inhibitor is localized within the ISYGN-DALMP sequence of APP, and a synthetic decapeptide containing this sequence (named APP-derived inhibitory peptide, APP-IP) selectively inhibits the activity of MMP-2. To determine the region of interaction that correlates with the selective inhibition, we constructed various MMP-2 mutants. An MMP-2 mutant, which had the hemopexin-like domain and three fibronectin-like type II domains of MMP-2 deleted, and native MMP-2 showed similar affinities for APP-IP, suggesting that only the catalytic domain of MMP-2 is essential for the interaction. Studies of chimeric proteases, consisting of various parts of the MMP-2 catalytic domain and those of MMP-7 (matrilysin) or MMP-9 (gelatinase B), further revealed that Ala(88) and Gly(94) in the non-prime side and Tyr(145) and Thr(146) in the prime side of the substrate-binding cleft of MMP-2 contribute separately to the selective inhibition. Replacement of the amino acid residue at position 94 of a chimeric MMP mutant affected its interaction with the C-terminal Pro(10) of APP-IP, whereas that of residues 145-148 affected the interaction with Tyr(3) of the inhibitor, suggesting that the N to C direction of APP-IP relative to the substrate-binding cleft of MMP is analogous to that of propeptide in proMMP, and opposite to that of substrate. When the APP-IP sequence was added to the N terminus of the catalytic domain of MMP-2, the activity of the protease was intramolecularly inhibited. We speculate that the direction of interaction makes the active site-bound APP-IP resistant to cleavage, thereby supporting the inhibitory action of the peptide inhibitor.  相似文献   

15.
16.
高分子量激肽原富含组氨酸区域抑制细胞伸展的机制分析   总被引:2,自引:0,他引:2  
活化型高分子量激肽原 (activehighmolecularweightkininogen ,HKa)是组织培养板上体外连接蛋白 (vitronectin ,VN)促使细胞伸展的潜在抑制物 ,已证实轻链的富含组氨酸区域 (histidine richdomain ,HRD)是HKa抗细胞伸展的活性区域 .HK的重组HRD (r HRD)能够促使成纤维细胞伸展 .通过基于HRD序列的选择肽分析 ,定位了HRD的细胞伸展序列 .5个肽中的 3个能够使TIG 3细胞伸展 .P 1肽引起的细胞伸展能够被可溶性P 5肽或HKa所抑制 .P 2肽不能抑制P 1或P 5肽引起的细胞伸展 .r HRD以及 3种肽介导的细胞伸展能够被RGD合成肽以及抗αvβ3或α5β1整合素抗体所抑制 .结果提示 ,选择肽引起的细胞伸展是由整合素介导的 ,尽管此区域不含有RGD序列  相似文献   

17.
It was recently shown that a 25-residue peptide, Dk-(61-85), derived from the alpha 1 domain of a murine major histocompatibility class I molecule (H-2Dk), affects insulin receptor functions (Hansen, T., Stagsted, J., Pedersen, L., Roth, R. A., Goldstein, A., and Olsson, L. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3123-3126; Stagsted, J., Reaven, G. M., Hansen, T., Goldstein, A., and Olsson, L. (1990) Cell 62, 297-307). We now report that this peptide can reversibly assume a biologically active or inactive state as measured in the rat adipocyte glucose uptake assay, implying that the peptide has at least two interconvertible conformations. The peptide has an ordered conformation in 0.1 M HCl or 0.1 M NaCl stock solution as shown by circular dichroism, but has a disordered molecular structure and is inactive when dissolved in H2O. The biologically active peptide forms liquid crystals at the stock solution concentration (1 mM), so the CD spectra do not provide information on the secondary structure. Under all conditions tested, biological activity (measured after transfer to assay buffer) is associated with an ordered conformation in stock solution. Biological activity and an ordered conformation of the peptide in H2O stock solution can be induced by increasing ionic strength (greater than 100 mM NaCl for maximal effect) or increasing pH (greater than 5 for maximal effect). The induction rate of the ordered conformation is slow with a half-maximal value obtained after approximately 20 min. Both biological activity and the ordered structure are lost upon heating of stock solution to 90 degrees C or upon transfer to assay buffer. A similar correlation of ordered structure with biological activity was observed with two truncated peptides derived from Dk-(61-85). It is inferred from these results that the Dk-(61-85) peptide and related peptides only affect insulin-stimulated glucose uptake in rat adipocytes if they have assumed an ordered conformation in stock solution prior to transfer to assay buffer and exposure to cells.  相似文献   

18.
Using the technique of UV-mediated cross-linking of nucleotides to their acceptor sites (Modak, M. J., and Gillerman-Cox, E. (1982) J. Biol. Chem. 257, 15105-15109), we have labeled calf terminal deoxynucleotidyltransferase (TdT) with [32P]dTTP. The specificity of dTTP cross-linking at the substrate binding site in TdT is demonstrated by the competitive inhibition of the cross-linking reaction by other deoxynucleoside triphosphates, and ATP and its analogues, requiring concentrations consistent with their kinetic constants. Tryptic peptide mapping of the [32P]dTTP-labeled enzyme showed the presence of a single radioactive peptide fraction that contained the site of dTTP cross-linking. The amino acid composition and sequence analysis of the radioactive peptide fraction revealed it to contain two tryptic peptides, spanning residues 221-231 and 234-249. Since these two peptides were covalently linked to dTTP, the region encompassed by them constitutes a substrate binding domain in TdT. Further proteolytic digestion of the tryptic peptide-dTTP complex, using V8 protease, yielded a smaller peptide, and its analysis narrowed the substrate binding domain to 14 amino acids corresponding to residues 224-237 in the primary amino acid sequence of TdT. Furthermore, 2 cysteine residues, Cys-227 and Cys-234, within this domain were found to be involved in the cross-linking of dTTP, suggesting their participation in the process of substrate binding in TdT.  相似文献   

19.
Molecular modeling has allowed us to propose that one main contact surface of the Fibroblast Growth Factor Receptor -1 (FGFR-1) to the ligand FGF-1 is formed by a 16 amino acid sequence comprised by the C-terminal region of the domain II (DII) plus the hinge linking DII and DIII domains and the N-terminal region of domain III (DIII). Therefore, this sequence was used to design the following three peptides: Ac-YQLDVVERS-NH2 (R1); Ac-YQLDVVERSPHRPILQ-NH2 (R2) and Ac-RSPHRPILQ-NH2 (R3). The synthetic peptides were tested in their ability to inhibit the mitogenic activity of FGF-1 and FGF-2 in cultured Balb/c 3T3 fibroblasts. The results showed that R1 and R2 inhibited the activity of FGF-1 (ID50 = 40 -50 7M) but not that of FGF-2. Molecular modeling studies of R1 and its docking to FGF-1 suggested that this peptide could assume a conformation very similar to that found in the corresponding segment of FGFR-1. All these results support our hypothesis that the C-terminal residues of the DII domain, represented by peptide R1, are part of a surface responsible for the binding of FGF-1 to FGFR-1 but not of FGF-2. Also, they indicate that peptide R1 may be useful for the development of small selective peptide inhibitors of the FGF-1 biological activities.  相似文献   

20.
Alpha-fetoprotein (AFP) is a major serum protein produced during fetal development. Experimental findings suggest that AFP has antiestrotrophic activity and that it can be developed as a therapeutic agent to treat existing estrogen-dependent breast cancer or to prevent premalignant foci from developing into breast cancer. The antiestrotrophic activity of AFP was reported to be localized to a peptide consisting of amino acids 447-480, a 34-mer peptide termed P447. A series of parsings and substitutions of amino acids in the P447 sequence was intended to identify the shortest analog which retained antiestrotrophic activity. Peptides related to P447 were generated using solid phase peptide synthesis. Several shorter peptides, including an 8-mer called P472-2 (amino acids 472-479, peptide sequence EMTPVNPG), retained activity, whereas peptides shorter than eight amino acid residues were inactive. The dose-related antiestrotrophic activity of AFP-derived peptides was determined in an immature mouse uterine growth assay that measures their ability to inhibit estradiol-stimulated uterine growth. In this assay, the maximal inhibitory activities exhibited by peptide P472-2 (49%), by peptide P447 (45%), and by intact AFP (35-45%) were comparable. The octapeptide P472-2 was also active against estradiol-stimulated growth of T47D human breast cancer cells in culture. These data suggest that peptide P472-2 is the minimal sequence in AFP, which retains the antiestrotrophic activity found with the full-length molecule. The synthetic nature and defined structure of this 8-mer peptide suggest that it can be developed into a new drug which opposes the action of estrogen, perhaps including the promotional effects of estradiol in the development of human breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号