首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
M Raha  H Sockett    R M Macnab 《Journal of bacteriology》1994,176(8):2308-2311
filL is a small gene of unknown function that lies within the beginning of a large flagellar operon of Salmonella typhimurium and Escherichia coli. A spontaneous fliL mutant of S. typhimurium, containing a frameshift mutation about 40% from the 3' end of the gene, was moderately motile but swarmed poorly, suggesting that FliL might be a component of the flagellar motor or switch. However, in-frame deletions of the E. coli gene, including an essentially total deletion, had little or no effect on motility or chemotaxis. Thus, FliL does not appear to have a major role in flagellar structure or function and is therefore unlikely to be a component of the motor or switch; the effect on motility caused by truncation of the gene is probably an indirect one.  相似文献   

4.
大肠杆菌(Escherichia coil)L-鼠李糖(rha)调节子由三个功能相关的操纵子(operon)组成,位于大肠杆菌染色体基因组中。它编码大肠杆菌吸收和利用L-鼠李糖的蛋白,即一个鼠李糖运输蛋白(RhaT)、三个鼠李糖代谢酶(RhaB、RhaA、RhaD)以及两个调节蛋白(RhaS、RhaR)。三个操纵子均受到L-鼠李糖本身的诱导,同时以调控蛋白RhaS、RhaR和CRP(cAMP受体蛋白)为中介的正调控也参与调节。  相似文献   

5.
The barA and uvrY genes of Escherichia coli encode a two-component sensor kinase and a response regulator, respectively. Although this system plays a major role in the regulation of central carbon metabolism, motility, and biofilm formation by controlling the expression of the CsrB and CsrC noncoding RNAs, the environmental conditions and the physiological signal(s) to which it responds remain obscure. In this study, we explored the effect of external pH on the activity of BarA/UvrY. Our results indicate that a pH lower than 5.5 provides an environment that does not allow activation of the BarA/UvrY signaling pathway.  相似文献   

6.
AtoSC two-component system participates in many indispensable processes of Escherichia coli. We report here that the AtoSC signal transduction is inhibited by established histidine kinase inhibitors. Closantel, RWJ-49815 and TNP-ATP belonging to different chemical classes of inhibitors, abrogated the in vitro AtoS kinase autophosphorylation. However, when AtoS was embedded in the membrane fractions, higher inhibitor concentrations were required for total inhibition. When AtoS interacted with AtoC forming complex, the intrinsic histidine kinase was protected by the response regulator, requiring increased inhibitors concentrations for partially AtoS autophosphorylation reduction. The inhibitors exerted an additional function on AtoSC, blocking the phosphotransfer from AtoS to AtoC, without however, affecting AtoC~P dephosphorylation. Their in vivo consequences through the AtoSC inhibition were elucidated on atoDAEB operon expression, which was inhibited only in AtoSC-expressing bacteria where AtoSC was induced by acetoacetate or spermidine. The inhibitor effects were extended on the AtoSC regulatory role on cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis. cPHB was decreased upon the blockers only in acetoacetate-induced AtoSC-expressing cells. Increased ATP amounts during bacterial growth reversed the inhibitory TNP-ATP-mediated effect on cPHB. The alteration of pivotal E. coli processes as an outcome of AtoSC inhibition, establish this system as a target of two-component systems inhibitors.  相似文献   

7.
The galactose regulon of Escherichia coli   总被引:5,自引:2,他引:3  
  相似文献   

8.
9.
10.
11.
The genes involved in methionine biosynthesis are scattered throughout the Escherichia coli chromosome and are controlled in a similar but not coordinated manner. The product of the metJ gene and S-adenosylmethionine are involved in the repression of this ‘regulon’.  相似文献   

12.
13.
Osmoregulation of the maltose regulon in Escherichia coli.   总被引:3,自引:14,他引:3       下载免费PDF全文
B Bukau  M Ehrmann    W Boos 《Journal of bacteriology》1986,166(3):884-891
The maltose regulon consists of four operons that direct the synthesis of proteins required for the transport and metabolism of maltose and maltodextrins. Expression of the mal genes is induced by maltose and maltodextrins and is dependent on a specific positive regulator, the MalT protein, as well as on the cyclic AMP-catabolite gene activator protein complex. In the absence of an exogenous inducer, expression of the mal regulon was greatly reduced when the osmolarity of the growth medium was high; maltose-induced expression was not affected, and malTc-dependent expression was only weakly affected. Mutants lacking MalK, a cytoplasmic membrane protein required for maltose transport, expressed the remaining mal genes at a high level, presumably because an internal inducer of the mal system accumulated; this expression was also strongly repressed at high osmolarity. The repression of mal regulon expression at high osmolarity was not caused by reduced expression of the malT, envZ, or crp gene or by changes in cellular cyclic AMP levels. In strains carrying mutations in genes encoding amylomaltase (malQ), maltodextrin phosphorylase (malP), amylase (malS), or glycogen (glg), malK mutations still led to elevated expression at low osmolarity. The repression at high osmolarity no longer occurred in malQ mutants, however, provided that glycogen was present.  相似文献   

14.
15.
16.
Disruption of normal protein trafficking in the Escherichia coli cell envelope (inner membrane, periplasm, outer membrane) can activate two parallel, but distinct, signal transduction pathways. This activation stimulates the expression of a number of genes whose products function to fold or degrade the mislocalized proteins. One of these signal transduction pathways is a two-component regulatory system comprised of the histidine kinase CpxA and the response regulator, CpxR. In this study we characterized gain-of-function Cpx* mutants in order to learn more about Cpx signal transduction. Sequencing demonstrated that the cpx* mutations cluster in either the periplasmic, the transmembrane, or the H-box domain of CpxA. Intriguingly, most of the periplasmic cpx* gain-of-function mutations cluster in the central region of this domain, and one encodes a deletion of 32 amino acids. Strains harboring these mutations are rendered insensitive to a normally activating signal. In vivo and in vitro characterization of maltose-binding-protein fusions between the wild-type CpxA and a representative cpx* mutant, CpxA101, showed that the mutant CpxA is altered in phosphotransfer reactions with CpxR. Specifically, while both CpxA and CpxA101 function as autokinases and CpxR kinases, CpxA101 is devoid of a CpxR-P phosphatase activity normally present in the wild-type protein. Taken together, the data support a model for Cpx-mediated signal transduction in which the kinase/phosphatase ratio is elevated by stress. Further, the sequence and phenotypes of periplasmic cpx* mutations suggest that interactions with a periplasmic signaling molecule may normally dictate a decreased kinase/phosphatase ratio under nonstress conditions.  相似文献   

17.
18.
Incomplete flagellar structures in Escherichia coli mutants.   总被引:24,自引:22,他引:2       下载免费PDF全文
  相似文献   

19.
20.
Two types of Escherichia coli K-12 regulatory mutants, partially or totally negative for the induction of the five catabolic enzymes (uronic isomerase, uxaC; altronate oxidized nicotinamide adenine dinucleotide: uxaB; mannonate hydrolyase, uxuA) and the transport system (exuT) of the hexuronate-inducible pathway, were isolated and analyzed enzymatically. Hexuronate-catabolizing revertants of the negative mutants showed a constitutive synthesis for some or all of these enzymes. Negative and constitutive mutations were localized in the same genetic locus, called exuR, and the following order for the markers situated between the min 65 and 68 was determined: argG--exuR--exuT--uxaC--uxaA--tolC. The enzymatic characterization of the pleiotropic negative and constitutive mutants of the exuR gene suggests that the exuR regulatory gene product exerts a specific and total control on the three exuT, uszB, and uxaC-uxaA operons of the galacturonate pathway and a partial control on the uxuA-uxuB operon of the glucuronate pathway. The analysis of diploid strains conatining both the wild type and a negative or constitutive allele of the exuR gene, as well as the analysis of thermosensitive mutants of the exuR gene, was in agreement with a negative regulatory mechanism for the control of the hexuronate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号