首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Statins and nitrogenous bisphosphonates (NBP) inhibit 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR) and farnesyl diphosphate synthase (FDPS), respectively, leading to depletion of farnesyl diphosphate (FPP) and disruption of protein prenylation. Squalene synthase (SQS) utilizes FPP in the first committed step from the mevalonate pathway toward cholesterol biosynthesis. Herein, we have identified novel bisphosphonates as potent and specific inhibitors of SQS, including the tetrasodium salt of 9-biphenyl-4,8-dimethyl-nona-3,7-dienyl-1,1-bisphosphonic acid (compound 5). Compound 5 reduced cholesterol biosynthesis and lead to a substantial intracellular accumulation of FPP without reducing cell viability in HepG2 cells. At high concentrations, lovastatin and zoledronate impaired protein prenylation and decreased cell viability, which limits their potential use for cholesterol depletion. When combined with lovastatin, compound 5 prevented lovastatin-induced FPP depletion and impairment of protein farnesylation. Compound 5 in combination with the NBP zoledronate completely prevented zoledronate-induced impairment of both protein farnesylation and geranylgeranylation. Cotreatment of cells with compound 5 and either lovastatin or zoledronate was able to significantly prevent the reduction of cell viability caused by lovastatin or zoledronate alone. The combination of an SQS inhibitor with an HMGCR or FDPS inhibitor provides a rational approach for reducing cholesterol synthesis while preventing nonsterol isoprenoid depletion.  相似文献   

2.
Protein farnesyl transferase (FTase) catalyzes transfer of a 15-carbon farnesyl group from farnesyl diphosphate (FPP) to a conserved cysteine in the C-terminal Ca1a2X motif of a range of proteins ("C" refers to the cysteine, "a" to any aliphatic amino acid, and "X" to any amino acid), and the lipid chain interacts with, and forms part of, the Ca1a2X peptide binding site. Here, we employed a library of anilinogeranyl diphosphate (AGPP) derivatives to examine whether altering the interacting surface between the two substrates could be exploited to generate Ca1a2X peptide selective FPP analogues. Analysis of transfer kinetics to dansyl-GCVLS peptide revealed that AGPP analogues with substituents smaller than or equal in size to a thiomethyl group supported FTase function, while analogues with larger substituents did not. Analogues with small meta-substitutions on the aniline ring such as iodo and cyano increased reactivity with dansyl-GCVLS and provided analogues that were effective FPP competitors. Other analogues with ortho-substitutions on the aniline were potent dansyl-GCVLS modification FTase inhibitors (Ki in the 2.4-18 nM range). Both meta- and para-trifluoromethoxy-AGPP are transferred to dansyl-GCVLS while the ortho-substituted isomer was a potent farnesyl transferase inhibitor (FTI) with an inhibition constant Ki = 3.0 nM. In contrast, ortho-trifluoromethoxy-AGPP was efficiently transferred to dansyl-GCVIM. Competition for dansyl-GCVLS and dansyl-GCVIM peptides by FPP and ortho-trifluoromethoxy-AGPP gave both analogue and farnesyl modified dansyl-GCVIM but only farnesylated dansyl-GCVLS. We provide evidence that competitive modification of dansyl-GCVIM by ortho-trifluoromethoxy-AGPP stems from a prechemical step discrimination between the competing peptides by the FTase-analogue complex. These results show that subtle changes engineered into the isoprenoid structure can alter the reactivity and FPP competitiveness of the analogues, which may be important for the development of prenylated protein function inhibitors.  相似文献   

3.
Troutman JM  Andres DA  Spielmann HP 《Biochemistry》2007,46(40):11299-11309
Protein farnesyl transferase (FTase) catalyzes transfer of a 15 carbon farnesyl lipid to cysteine in the C-terminal Ca1a2X sequence of numerous proteins including Ras. Previous studies have shown that product release is rate limiting and is dependent on binding of either a new peptide or isoprenoid diphosphate substrate. While considerable progress has been made in understanding how FTase distinguishes between related target proteins, the relative importance of the two pathways for product release on substrate selectivity is unclear. A detailed analysis of substrate stimulated product release has now been performed and provides new insights into the mechanism of FTase target selectivity. To clarify how FTase selects between different Ca1a2X sequences, we have examined the competition of various peptide substrates for modification with the isoprenoids farnesyl diphosphate (FPP) and anilinogeranyl diphosphate (AGPP). We find that reactivity of some competing peptides is correlated with apparent Kmpeptide, while the reactivity of others is predicted by the selectivity factor apparent kcat/Kmpeptide. The peptide target selectivity also depends on the structure of the isoprenoid donor. Additionally, we observe two peptide substrate concentration dependent maxima and substrate inhibition in the steady-state reaction which require a minimum of three peptide binding states for the steady-state FTase reaction mechanism. We propose a model for the FTase reaction mechanism that, in addition to FPP stimulated product release, incorporates peptide binding to the FTase-FPP complex and the formation of an FTase-product-peptide complex followed by product release leading to an inhibitory FTase-peptide complex as a natural consequence of catalysis to explain these results.  相似文献   

4.
We report on the cDNA cloning and characterization of a novel short-chain isoprenyl diphosphate synthase from the aphid Myzus persicae. Of the three IPPS cDNAs we cloned, two yielded prenyltransferase activity following expression in Escherichia coli; these cDNAs encode identical proteins except for the presence, in one of them, of an N-terminal mitochondrial targeting peptide. Although the aphid enzyme was predicted to be a farnesyl diphosphate synthase by BLASTP analysis, rMpIPPS, when isopentenyl diphosphate and dimethylallyl diphosphate are supplied as substrates, typically generated geranyl diphosphate (C10) as its main product, along with significant quantities of farnesyl diphosphate (C15). Analysis of an MpIPPS homology model pointed to substitutions that could confer GPP/FPP synthase activity to the aphid enzyme.  相似文献   

5.
6.
Protein farnesyltransferase (FTase) catalyzes the post-translational modification of many important cellular proteins, and is a potential anticancer drug target. Crystal structures of the FTase ternary complex illustrate an unusual feature of this enzyme, the fact that the isoprenoid substrate farnesyl diphosphate (FPP) forms part of the binding site for the peptide substrate. This implies that changing the structure of FPP could alter the specificity of the FPP-FTase complex for peptide substrates. We have found that this is the case; a newly synthesized FPP analogue, 3-MeBFPP, is a substrate with three peptide cosubstrates, but is not an effective substrate with a fourth peptide (dansyl-GCKVL). Addition of this analogue also inhibits farnesylation of dansyl-GCKVL by FPP. Surprisingly, the differential substrate abilities of these four peptides with FPP-FTase and 3-MeBFPP-FTase complexes do not correlate with their binding affinities for these isoprenoid-enzyme complexes. The possible mechanistic rationales for this observation, along with its potential utility for the study of protein prenylation, are discussed.  相似文献   

7.
Sequential processing of H-Ras by protein farnesyl transferase (FTase), Ras converting enzyme (Rce1), and protein-S-isoprenylcysteine O-methyltransferase (Icmt) to give H-Ras C-terminal farnesyl-S-cysteine methyl ester is required for appropriate H-Ras membrane localization and function, including activation of the mitogen-activated protein kinase (MAPK) cascade. We employed a Xenopus laevis oocyte whole-cell model system to examine whether anilinogeranyl diphosphate analogues of similar shape and size, but with a hydrophobicity different from that of the FTase substrate farnesyl diphosphate (FPP), could ablate biological function of H-Ras. Analysis of oocyte maturation kinetics following microinjection of in vitro analogue-modified H-Ras into isoprenoid-depleted oocytes revealed that analogues with a hydrophobicity near that of FPP supported H-Ras biological function, while the analogues p-nitroanilinogeranyl diphosphate (p-NO2-AGPP), p-cyanoanilinogeranyl diphosphate (p-CN-AGPP), and isoxazolaminogeranyl diphosphate (Isox-GPP) with hydrophobicities 2-5 orders of magnitude lower than that of FPP did not. We found that although H-Ras modified with FPP analogues p-NO2-AGPP, p-CN-AGPP, and Isox-GPP was an efficient substrate for C-terminal postprenylation processing by Rce1 and Icmt, co-injection of H-Ras with analogues p-NO2-AGPP, p-CN-AGPP, or Isox-GPP could not activate MAPK. We propose that H-Ras biological function requires a minimum lipophilicity of the prenyl group to allow important interactions downstream of the C-terminal processed H-Ras protein. The hydrophilic FPP analogues p-NO2-AGPP, p-CN-AGPP, and Isox-GPP are H-Ras function inhibitors (RFIs) and serve as lead compounds for a unique class of potential anticancer therapeutics.  相似文献   

8.
Protein farnesyl transferase (PFTase) catalyzes the reaction between farnesyl diphosphate and a protein substrate to form a thioether-linked prenylated protein. The fact that many prenylated proteins are involved in signaling processes has generated considerable interest in protein prenyl transferases as possible anticancer targets. While considerable progress has been made in understanding how prenyl transferases distinguish between related target proteins, the rules for isoprenoid discrimination by these enzymes are less well understood. To clarify how PFTase discriminates between FPP and larger prenyl diphosphates, we have examined the interactions between the enzyme and several isoprenoid analogues, GGPP, and the farnesylated peptide product using a combination of biochemical and structural methods. Two photoactive isoprenoid analogues were shown to inhibit yeast PFTase with K(I) values as low as 45 nM. Crystallographic analysis of one of these analogues bound to PFTase reveals that the diphosphate moiety and the two isoprene units bind in the same positions occupied by the corresponding atoms in FPP when bound to PFTase. However, the benzophenone group protrudes into the acceptor protein binding site and prevents the binding of the second (protein) substrate. Crystallographic analysis of geranylgeranyl diphosphate bound to PFTase shows that the terminal two isoprene units and diphosphate group of the molecule map to the corresponding atoms in FPP; however, the first and second isoprene units bulge away from the acceptor protein binding site. Comparison of the GGPP binding mode with the binding of the farnesylated peptide product suggests that the bulkier isoprenoid cannot rearrange to convert to product without unfavorable steric interactions with the acceptor protein. Taken together, these data do not support the "molecular ruler hypotheses". Instead, we propose a "second site exclusion model" in which PFTase binds larger isoprenoids in a fashion that prevents the subsequent productive binding of the acceptor protein or its conversion to product.  相似文献   

9.
A sensitive, nonradioactive analytical method has been developed to simultaneously determine the concentrations of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) in cultured cells. Following extraction, enzyme assays involving recombinant farnesyl protein transferase or geranylgeranyl protein transferase I are performed to conjugate FPP or GGPP to dansylated peptides. The reaction products are then separated and quantified by high-performance liquid chromatography coupled to a fluorescence detector at the excitation wavelength 335 nm and the emission wavelength 528 nm. The retention times for farnesyl-peptide and geranylgeranyl-peptide are 8.4 and 16.9 min, respectively. The lower limit of detection is 5 pg of FPP or GGPP ( approximately 0.01 pmol). A linear response has been established over a range of 5-1000 pg ( approximately 0.01-2 pmol) with good reproducibility. The method has been used to determine the levels of FPP (0.125+/-0.010 pmol/10(6)cells) and GGPP (0.145+/-0.008 pmol/10(6)cells) in NIH3T3 cells. Furthermore, changes in FPP and GGPP levels following treatment of cells with isoprenoid biosynthetic pathway inhibitors were measured. This method is suitable for the determination of the concentrations of FPP and GGPP in any cell type or tissue.  相似文献   

10.
11.
Rubber transferase, a cis-prenyltransferase, catalyzes the addition of thousands of isopentenyl diphosphate (IPP) molecules to an allylic diphosphate initiator, such as farnesyl diphosphate (FPP, 1), in the presence of a divalent metal cofactor. In an effort to characterize the catalytic site of rubber transferase, the effects of two types of protein farnesyltransferase inhibitors, several chaetomellic acid A analogs (2, 4-7) and alpha-hydroxyfarnesylphosphonic acid (3), on the ability of rubber transferase to add IPP to the allylic diphosphate initiator were determined. Both types of compounds inhibited the activity of rubber transferases from Hevea brasiliensis and Parthenium argentatum, but there were species-specific differences in the inhibition of rubber transferases by these compounds. Several shorter analogs of chaetomellic acid A did not inhibit rubber transferase activity, even though the analogs contained chemical features that are present in an elongating rubber molecule. These results indicate that the initiator-binding site in rubber transferase shares similar features to FPP binding sites in other enzymes.  相似文献   

12.
Three isoprenoid diphosphate analogues of farnesyl diphosphate (FPP) where the diphosphate has been replaced by methylene diphosphonate and the negative charges masked by frangible pivaloyloxymethyl (POM) esters were prepared. Farnesyl methylenediphosphonate is a sub-micromolar substrate for protein farnesyl transferase. The tripivaloyloxymethyl esters of isoprenoid methylenediphosphonate have significantly increased lipophilicity and may act as important farnesyl diphosphate prodrugs.  相似文献   

13.
Cui G  Wang B  Merz KM 《Biochemistry》2005,44(50):16513-16523
Farnesyltransferase (FTase) catalyzes the transfer of farnesyl from farnesyl diphosphate (FPP) to cysteine residues at or near the C-terminus of protein acceptors with a CaaX motif (a, aliphatic; X, Met). Farnesylation is a critical modification to many switch proteins involved in the extracellular signal transduction pathway, which facilitates their fixation on the cell membrane where the extracellular signal is processed. The malfunction caused by mutations in these proteins often causes uncontrolled cell reproduction and leads to tumor formation. FTase inhibitors have been extensively studied as potential anticancer agents in recent years, several of which have advanced to different phases of clinical trials. However, the mechanism of this biologically important enzyme has not been firmly established. Understanding how FTase recruits the FPP substrate is the first and foremost step toward further mechanistic investigations and the design of effective FTase inhibitors. Molecular dynamic simulations were carried out on the ternary structure of FTase complexed with the FPP substrate and an acetyl-capped tetrapeptide (acetyl-CVIM), which revealed that the FPP substrate maintains an inactive conformation and the binding of the diphosphate group can be largely attributed to residues R291beta, K164alpha, K294beta, and H248beta. The FPP substrate assumes an extended conformation in the binding site with restricted rotation of the backbone dihedral angles; however, it does not have a well-defined conformation when unbound in solution. This is evident from multinanosecond MD simulations of the FPP substrate in a vacuum and solution. Our conclusion is further supported by theoretical J coupling calculations. Our results on the FPP binding are in good agreement with previous experimental kinetic studies on FTase mutants. The hypothetical conformational activation of the FPP substrate is currently under investigation.  相似文献   

14.
Zhang F  Dai X  Wang Y 《Molecular & cellular proteomics : MCP》2012,11(7):M111.016915-M111.016915-8
5-Aza-2'-deoxycytidine (5-Aza-CdR), a nucleoside analog that can inhibit DNA cytosine methylation, possesses potent antitumorigenic activities for myeloid disorders. Although 5-Aza-CdR is known to be incorporated into DNA and inhibit DNA (cytosine-5)-methyltransferases, the precise mechanisms underlying the drug's antineoplastic activity remain unclear. Here we utilized a mass spectrometry-based quantitative proteomic method to analyze the 5-Aza-CdR-induced perturbation of protein expression in Jurkat-T cells at the global proteome scale. Among the ≈ 2780 quantified proteins, 188 exhibited significant alteration in expression levels upon a 24-hr treatment with 5 μm 5-Aza-CdR. In particular, we found that drug treatment led to substantially reduced expression of farnesyl diphosphate synthase (FDPS) and farnesyl diphosphate farnesyltransferase (FDFT1), two important enzymes involved in de novo cholesterol synthesis. Consistent with this finding, 5-Aza-CdR treatment of leukemia (Jurkat-T, K562 and HL60) and melanoma (WM-266-4) cells led to a marked decrease in cellular cholesterol content and pronounced growth inhibition, which could be rescued by externally added cholesterol. Exposure of these cells to 5-Aza-CdR also led to epigenetic reactivation of dipeptidyl peptidase 4 (DPP4) gene. Additionally, suppression of DPP4 expression with siRNA induced elevated protein levels of FDPS and FDFT1, and increased cholesterol biosynthesis in WM-266-4 cells. Together, the results from the present study revealed, for the first time, that 5-Aza-CdR exerts its cytotoxic effects in leukemia and melanoma cells through epigenetic reactivation of DPP4 gene and the resultant inhibition of cholesterol biosynthesis in these cells.  相似文献   

15.
Didehydrofarnesyl diphosphate (delta delta FPP), a fluorescent pentaene analogue of farnesyl diphosphate (FPP), was synthesized using stereoselective Wittig reactions. Although delta delta FPP was not an alternative substrate for yeast protein farnesyltransferase (FTase), the fluorescent analogue was a potent competitive inhibitor with a K(i) value of 8.8 microM (K (m) (FPP) = 27 microM).  相似文献   

16.
A series of substituents was installed at the 3 position of farnesyl diphosphate through a copper-cyanide mediated coupling of a vinyl triflate with various Grignard reagents. These novel FPP mimetics were then evaluated as inhibitors of or substrates for mammalian protein farnesyl transferase. The IC50 values for these compounds range from 18 to 10,100 nm, with the 3-isopropenyl analogue being one of the most potent FPP-mimetic mFTase inhibitors yet synthesized.  相似文献   

17.
The principle of selective elution from a solid phase has been exploited to develop an assay for the determination of squalene biosynthesis in rat liver homogenates. Using either [1-14C]isopentenyl diphosphate as a precursor for squalene or [2-14C]farnesyl diphosphate as a direct substrate of squalene synthase, the production of radiolabeled squalene is determined after adsorption of assay mixtures onto silica gel thin-layer chromatography sheets and selective elution of the diphosphate precursors into a solution of sodium dodecyl sulfate at alkaline pH. The use of [2-14C]farnesyl diphosphate, and of an endogenous oxygen consumption system (ascorbate/ascorbate oxidase) to prevent further metabolism of squalene, allows the method to be applied as a dedicated assay for squalene synthase activity. The assay has been developed in microtiter plate format and may be deployed either in a quantitative, low-throughout mode or in a qualitative, high-through-put mode. The latter is suitable for screening to aid in the discovery of new inhibitors of squalene synthase.  相似文献   

18.
Isoprenoids are an intensive group of compounds made from isopentenyl diphosphate (IPP), catalyzed by prenyltransferases such as farnesyl diphosphate (FPP) cyclases, squalene synthase, protein farnesyltransferases and geranylgeranyltransferases, aromatic prenyltransferases as well as a group of prenyltransferases (cis- and trans-types) catalyzing consecutive condensation reactions of FPP with specific numbers of IPP to generate linear products with designate chain lengths. These prenyltransferases play significant biological functions and some of them are drug targets. In this review, structures, mechanisms, and inhibitors of a cis-prenyltransferase, undecaprenyl diphosphate synthase (UPPS) that mediates bacterial peptidoglycan biosynthesis, are summarized for comparison with the most related trans-prenyltransferases and other prenyltransferases.  相似文献   

19.
Abstract

A group of prenyltransferases produce linear lipids by catalyzing consecutive condensation reactions of farnesyl diphosphate (FPP) with specific numbers of isopentenyl diphosphate (IPP), a common building block of isoprenoid compounds. Depending on the stereochemistry of the double bonds formed during IPP condensation, these prenyltransferases are categorized as cis- and trans-types. Undecaprenyl diphosphate synthase (UPPS) that catalyzes chain elongation of FPP by consecutive condensation reactions with eight IPP, to form C55 lipid carrier for bacterial cell wall biosynthesis, serves as a model for understanding cis-prenyltransferases. In this review, the current knowledge in UPPS kinetics, mechanisms, structures, and inhibitors is summarized.  相似文献   

20.
To determine the substrate specificities of wild and mutated types of farnesyl diphosphate (FPP) synthases from Bacillus stearothermophilus, we examined the reactivities of 8-hydroxygeranyl diphosphate (HOGPP) and 8-methoxygeranyl diphosphate (CH(3)OGPP) as allylic substrate homologs. The wild-type FPP synthase reaction of HOGPP (and CH(3)OGPP) with isopentenyl diphosphate (IPP) gave hydroxyfarnesyl- (and methoxyfarnesyl-) diphosphates that stopped at the first stage of condensation. On the other hand, with mutated type FPP synthase (Y81S), the former gave hydroxygeranylgeranyl diphosphate as the main double-condensation product together with hydroxyfarnesyl diphosphate as a single-condensation product and a small amount of hydroxygeranylfarnesyl diphosphate as a triple-condensation product. Moreover, the latter gave a double-condensation product, methoxygeranylgeranyl diphosphate, as the main product and only a trace of methoxyfarnesyl diphosphate was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号