首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate whether the deadlift could be effectively incorporated with explosive resistance training (ERT) and to investigate whether the inclusion of chains enhanced the suitability of the deadlift for ERT. Twenty-three resistance trained athletes performed the deadlift with 30, 50, and 70% 1-repetition maximum (1RM) loads at submaximal velocity, maximal velocity (MAX), and MAX with the inclusion of 2 chain loads equal to 20 or 40% of the subjects' 1RM. All trials were performed on force platforms with markers attached to the barbell to calculate velocity and acceleration using a motion capture system. Significant increases in force, velocity, power, rate of force development, and length of the acceleration phase (p < 0.05) were obtained when repetition velocity increased from submaximal to maximal. During MAX repetitions with a constant resistance, the mean length of the acceleration phase ranged from 73.2 (±7.2%) to 84.9 (±12.2%) of the overall movement. Compared to using a constant resistance, the inclusion of chains enabled greater force to be maintained to the end of the concentric action and significantly increased peak force and impulse (p < 0.05), while concurrently decreasing velocity, power, and rate of force development (p < 0.05). The effects of chains were influenced by the magnitude of the chain and barbell resistance, with greater increases and decreases in mechanical variables obtained when heavier chain and barbell loads were used. The results of the investigation suggest that the deadlift can be incorporated effectively in ERT programs. Coaches and athletes should be aware that the inclusion of heavy chains may have both positive and negative effects on kinematics and kinetics of an exercise.  相似文献   

2.
This study examined mean integrated electromyography (I-EMG) for the quadriceps and hamstring muscle groups, as well as mean and peak vertical ground reaction forces (GRFs), for 3 conditions of the back squat. Conditions included (a) squat with barbell and weight plates, (b) squat with barbell and weight plates plus chains hung on each end of the barbell to replace approximately 10% of the squat load, and (c) squat with barbell and weight plates plus elastic bands offering resistance equivalent to approximately 10% of the squat load. Weight plates equal to the load added by either the chains or elastic bands were removed for the latter 2 squat conditions. Vertical GRFs were obtained during a single testing session for all 3 squat conditions. The tests were performed on a 2-cm thick aluminum platform (0.76 x 1.0 m) bolted directly to a force plate (OR6-5-2000, AMTI, Watertown, MA). Surface electrode I-EMG data from the quadriceps and hamstrings were recorded at 500 Hz. The exercise order was randomly determined for 11 NCAA Division I athletes who had experience using these types of squats. A repeated measures analysis of covariance revealed no differences in I-EMG and GRF during the eccentric or concentric phase for any of the 3 squat conditions. Analyses showed that mean GRF and I-EMG was significantly different between eccentric and concentric phases for all groups. The results question the usefulness of performing squats combining barbell and weight plates with chain and elastic resistance.  相似文献   

3.
The aim of this study was to compare measures of power output applied to the center of mass of the barbell and body system (CM) obtained by multiplying ground reaction force (GRF) by (a) the velocity of the barbell; (b) the velocity of the CM derived from three-dimensional (3D) whole-body motion analysis, and (c) the velocity of the CM derived from GRF during lower-body resistance exercise. Ten resistance-trained men performed 3 maximal-effort single back squats with 60% 1 repetition maximum while GRF and whole-body motion were captured using synchronized Kistler force platforms and a Vicon Motus motion analysis system. Repeated measures analysis of variance of time-normalized kinematic and kinetic data obtained using the different methods showed that the barbell was displaced 13.4% (p < 0.05) more than the CM, the velocity of the barbell was 16.1% (p < 0.05) greater than the velocity of the CM, and power applied to the CM obtained by multiplying GRF by the velocity of the barbell was 18.7% (p < 0.05) greater than power applied to the CM obtained by multiplying the force applied to the CM by its resultant velocity. Further, the velocity of the barbell was significantly greater than the velocity of the trunk, upper leg, lower leg, and foot (p < 0.05), indicating that a failure to consider the kinematics of body segments during lower-body resistance exercise can lead to a significant overestimation of power applied to the CM. Strength and conditioning coaches and investigators are urged to obtain measures of power from the force applied to and the velocity of either the barbell (using inverse dynamics) or CM (GRF or 3D motion analysis). Failure to apply these suggestions could result in continued overestimation of CM power, compromising methodological integrity.  相似文献   

4.
ABSTRACT: Bryanton, MA, Kennedy, MD, Carey, JP, and Chiu, LZF. Effect of squat depth and barbell load on relative muscular effort in squatting. J Strength Cond Res 26(10): 2820-2828, 2012-Resistance training is used to develop muscular strength and hypertrophy. Large muscle forces, in relation to the muscle's maximum force-generating ability, are required to elicit these adaptations. Previous biomechanical analyses of multi-joint resistance exercises provide estimates of muscle force but not relative muscular effort (RME). The purpose of this investigation was to determine the RME during the squat exercise. Specifically, the effects of barbell load and squat depth on hip extensor, knee extensor, and ankle plantar flexor RME were examined. Ten strength-trained women performed squats (50-90% 1 repetition maximum) in a motion analysis laboratory to determine hip extensor, knee extensor, and ankle plantar flexor net joint moment (NJM). Maximum isometric strength in relation to joint angle for these muscle groups was also determined. Relative muscular effect was determined as the ratio of NJM to maximum voluntary torque matched for joint angle. Barbell load and squat depth had significant interaction effects on hip extensor, knee extensor, and ankle plantar flexor RME (p < 0.05). Knee extensor RME increased with greater squat depth but not barbell load, whereas the opposite was found for the ankle plantar flexors. Both greater squat depth and barbell load increased hip extensor RME. These data suggest that training for the knee extensors can be performed with low relative intensities but require a deep squat depth. Heavier barbell loads are required to train the hip extensors and ankle plantar flexors. In designing resistance training programs with multi-joint exercises, how external factors influence RME of different muscle groups should be considered to meet training objectives.  相似文献   

5.
One of the most popular exercises for developing lower-body muscular power is the weighted vertical jump. The present study sought to examine the effect of altering the position of the external load on the kinematics and kinetics of the movement. Twenty-nine resistance-trained rugby union athletes performed maximal effort jumps with 0, 20, 40, and 60% of their squat 1 repetition maximum (1RM) with the load positioned (a) on the posterior aspect of the shoulder using a straight barbell and (b) at arms' length using a hexagonal barbell. Kinematic and kinetic variables were calculated through integration of the vertical ground reaction force data using a forward dynamics approach. Performance of the hexagonal barbell jump resulted in significantly (p < 0.05) greater values for jump height, peak force, peak power, and peak rate of force development compared with the straight barbell jump. Significantly (p < 0.05) greater peak power was produced during the unloaded jump compared with all trials where the external load was positioned on the shoulder. In contrast, significantly (p < 0.05) greater peak power was produced when using the hexagonal barbell combined with a load of 20% 1RM compared with all other conditions investigated. The results suggest that weighted vertical jumps should be performed with the external load positioned at arms' length rather than on the shoulder when attempting to improve lower-body muscular performance.  相似文献   

6.
Measurement of power output during resistance training is becoming ubiquitous in strength and conditioning programs, but there is great variation in the methods used. The main purposes of this study were to compare the power output values obtained from 4 different methods and to examine the relationships between these values. Male semiprofessional Australian rules football players (n = 30) performed hang power clean and weighted jump squat while ground reaction force (GRF)-time data and barbell displacement-time data were sampled simultaneously using a force platform and a linear position transducer attached to the barbell. Peak and mean power applied to the barbell was obtained from barbell displacement-time data (method 1). Peak and mean power applied to the system (barbell + lifter) was obtained from 3 other methods: (a) using GRF-time data (method 2), (b) using barbell displacement-time data (method 3), and (c) using both barbell displacement-time data and GRF-time data (method 4). The peak power values (W) obtained from methods 1, 2, 3, and 4 were (mean +/- SD) 1,644 +/- 295, 3,079 +/- 638, 3,821 +/- 917, and 4,017 +/- 833 in hang power clean and 1,184 +/- 115, 3,866 +/- 451, 3,567 +/- 494, and 4,427 +/- 557 in weighted jump squat. There were significant differences between power output values obtained from method 1 vs. methods 2, 3, and 4, as well as method 2 vs. methods 3 and 4. The power output applied to the barbell and that applied to the system was significantly correlated (r = 0.65-0.81). As a practical application, it is important to understand the characteristics of each method and consider how power output should be measured during the hang power clean and the weighted jump squat.  相似文献   

7.
Proponents of chain training suggest that using chains hung from the ends of barbells rather than using conventional barbells alone enhances strength, power, and neuromuscular adaptations. The purpose of this study was to determine whether a conventional barbell with chains compared to a conventional barbell without chains would affect the performance of an Olympic Clean. The subjects were also asked regarding their perception of how chains affected their lifting. Four male and 3 female competitive weightlifters who used chains as part of their training participated in the study. The testing protocol compared the subjects' lifting 80% and 85% of their 1 repetition maximum (1RM) using conventional barbells and their lifting 80% and 85% of their 1RM using chains (75% conventional barbells + 5% chains and 80% conventional barbells + 5% chains, respectively). Video analysis evaluated the bar's vertical displacement and velocity and the rate of force production. Vertical ground reaction forces for the first-pull, unweighting, and second-pull phases of the lift were evaluated by using a force plate. After testing, the subjects completed a 2-item questionnaire asking individual perception of the effects of the chains. The results showed no significant difference for condition for any of the variables examined. In contrast, all subjects perceived that the chains required a greater effort. In conclusion, the results indicated that the addition of chains provided no greater value over lifting conventional barbells alone in the performance of the Olympic Clean, although the subjects perceived the chains to have a positive effect.  相似文献   

8.
This study examined the changes in peak power, ground reaction force and velocity with different loads during the performance of the parallel squat movement. Twelve experienced male lifters (26.83 +/- 4.67 years of age) performed the standard parallel squat, using loads equal to 20, 30, 40, 50, 60, 70, 80, and 90% of 1 repetition maximum (1RM). Each subject performed all parallel squats with as much explosiveness as possible using his own technique. Peak power (PP), peak ground reaction force (PGRF), peak barbell velocity (PV), force at the time of PP (FPP), and velocity at the time of PP (VPP) were determined from force, velocity, and power curves calculated using barbell velocity and ground reaction force data. No significant differences were detected among loads for PP; however, the greatest PP values were associated with loads of 40 and 50% of 1RM. Higher loads produced greater PGRF and FPP values than lower loads (p < 0.05) in all cases except between loads equal to 60-50, 50-40, and 40-30% of 1RM for PGRF, and between loads equal to 70-60 and 60-50% of 1RM for FPP. Higher loads produced lower PV and VPP values than lower loads (p < 0.05) in all cases except between the 20-30, 70-80, and 80-90% of 1RM conditions. These results may be helpful in determining loads when prescribing need-specific training protocols targeting different areas of the load-velocity continuum.  相似文献   

9.
The purpose of our study was to assess data reproducibility from 2 consecutive front squat workouts, spaced 1 week apart, performed by American college football players (n = 18) as they prepared for their competitive season. For each workout, our methods entailed the performance of 3-6 front squat repetitions per set at 55, 65, and 75% of subject's 1 repetition maximum (1RM) load. In addition, a fourth set was done at a heavier load, with a resistance equal to 80 and 83% of their 1RM values, for the first and second workouts, respectively. A triple-axis accelerometer was affixed to a barbell to quantify exercise performance. Per load, the accelerometer measures peak values for the following indices: force, velocity, and power. To assess data reproducibility, inter-workout comparisons were made for 12 performance indices with 4 statistical test-retest measures: intraclass correlation coefficients, coefficients of variation (CVs), and the SEM expressed in both absolute and relative terms. Current results show that the majority of performance indices exceeded intraclass correlation (0.75-0.80) and CV (10-15%) values previously deemed as acceptable levels of data reproducibility. The 2 indices with the greatest variability were power and velocity values obtained at 55% of the 1RM load; thus, it was concluded that higher movement rates at the lightest load were the most difficult aspect of front squat performance to repeat successfully over time. Our practical applications imply lighter loads, with inherently higher rates of barbell movement, yield lower data reproducibility values.  相似文献   

10.
Relative net vertical impulse determines jumping performance   总被引:1,自引:0,他引:1  
The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.  相似文献   

11.
Strength testing is often used with team-sport athletes, but some measures of strength may have limited prognostic/diagnostic value in terms of the physical demands of the sport. The purpose of this study was to investigate relationships between sprint ability and the kinetic and kinematic outputs of a machine squat jump. Thirty elite level rugby union and league athletes with an extensive resistance-training background performed bilateral concentric-only machine squat jumps across loads of 20% to 90% 1 repetition maximum (1RM), and sprints over 10 meters and 30 or 40 meters. The magnitudes of the relationships were interpreted using Pearson correlation coefficients, which had uncertainty (90% confidence limits) of approximately +/-0.3. Correlations of 10-meter sprint time with kinetic and kinematic variables (force, velocity, power, and impulse) were generally positive and of moderate to strong magnitude (r = 0.32-0.53). The only negative correlations observed were for work, although the magnitude was small (r = -0.18 to -0.26). The correlations for 30- or 40-meter sprint times were similar to those for 10-meter times, although the correlation with work was positive and moderate (r = 0.35-0.40). Correlations of 10-meter time with kinetic variables expressed relative to body mass were generally positive and of trivial to small magnitude (r = 0.01-0.29), with the exceptions of work (r = -0.31 to -0.34), and impulse (r = -0.34 to -0.39). Similar correlations were observed for 30- and 40-meter times with kinetic measures expressed relative to body mass. Although correlations do not imply cause and effect, the preoccupation with maximizing power output in this particular resistance exercise to improve sprint ability appears problematic. Work and impulse are potentially important strength qualities to develop in the pursuit of improved sprinting performance.  相似文献   

12.
The purpose of this investigation was to determine the relationship between countermovement vertical jump (CMJ) performance and various methods used to assess isometric and dynamic multijoint strength. Twelve NCAA Division I-AA male football and track and field athletes (age, 19.83 +/- 1.40 years; height, 179.10 +/- 4.56 cm; mass, 90.08 +/- 14.81 kg; percentage of body fat, 11.85 +/- 5.47%) participated in 2 testing sessions. The first session involved 1 repetition maximum (1RM) (kg) testing in the squat and power clean. During the second session, peak force (N), relative peak force (N x kg(-1)), peak power (W), relative peak power (W x kg(-1)), peak velocity (m x s(-1)), and jump height (meters) in a CMJ, and peak force and rate of force development (RFD) (N x s(-1)) in a maximal isometric squat (ISO squat) and maximal isometric mid-thigh pull (ISO mid-thigh) were assessed. Significant correlations (P < or = 0.05) were found when comparing relative 1RMs (1RM/body mass), in both the squat and power clean, to relative CMJ peak power, CMJ peak velocity, and CMJ height. No significant correlations existed between the 4 measures of absolute strength, which did not account for body mass (squat 1RM, power clean 1RM, ISO squat peak force, and ISO mid-thigh peak force) when compared to CMJ peak velocity and CMJ height. In conclusion, multijoint dynamic tests of strength (squat 1RM and power clean 1RM), expressed relative to body mass, are most closely correlated with CMJ performance. These results suggest that increasing maximal strength relative to body mass can improve performance in explosive lower body movements. The squat and power clean, used in a concurrent strength and power training program, are recommended for optimizing lower body power.  相似文献   

13.
The present study investigates how the CNS deals with the omnipresent force of gravity during arm motor planning. Previous studies have reported direction-dependent kinematic differences in the vertical plane; notably, acceleration duration was greater during a downward than an upward arm movement. Although the analysis of acceleration and deceleration phases has permitted to explore the integration of gravity force, further investigation is necessary to conclude whether feedforward or feedback control processes are at the origin of this incorporation. We considered that a more detailed analysis of the temporal features of vertical arm movements could provide additional information about gravity force integration into the motor planning. Eight subjects performed single joint vertical arm movements (45° rotation around the shoulder joint) in two opposite directions (upwards and downwards) and at three different speeds (slow, natural and fast). We calculated different parameters of hand acceleration profiles: movement duration (MD), duration to peak acceleration (D PA), duration from peak acceleration to peak velocity (D PA-PV), duration from peak velocity to peak deceleration (D PV-PD), duration from peak deceleration to the movement end (D PD-End), acceleration duration (AD), deceleration duration (DD), peak acceleration (PA), peak velocity (PV), and peak deceleration (PD). While movement durations and amplitudes were similar for upward and downward movements, the temporal structure of acceleration profiles differed between the two directions. More specifically, subjects performed upward movements faster than downward movements; these direction-dependent asymmetries appeared early in the movement (i.e., before PA) and lasted until the moment of PD. Additionally, PA and PV were greater for upward than downward movements. Movement speed also changed the temporal structure of acceleration profiles. The effect of speed and direction on the form of acceleration profiles is consistent with the premise that the CNS optimises motor commands with respect to both gravitational and inertial constraints.  相似文献   

14.
Our aim was to clarify the relationship between power output and the different mechanical parameters influencing it during squat jumps, and to further use this relationship in a new computation method to evaluate power output in field conditions. Based on fundamental laws of mechanics, computations were developed to express force, velocity and power generated during one squat jump. This computation method was validated on eleven physically active men performing two maximal squat jumps. During each trial, mean force, velocity and power were calculated during push-off from both force plate measurements and the proposed computations. Differences between the two methods were not significant and lower than 3% for force, velocity and power. The validity of the computation method was also highlighted by Bland and Altman analyses and linear regressions close to the identity line (P<0.001). The low coefficients of variation between two trials demonstrated the acceptable reliability of the proposed method. The proposed computations confirmed, from a biomechanical analysis, the positive relationship between power output, body mass and jump height, hitherto only shown by means of regression-based equations. Further, these computations pointed out that power also depends on push-off vertical distance. The accuracy and reliability of the proposed theoretical computations were in line with those observed when using laboratory ergometers such as force plates. Consequently, the proposed method, solely based on three simple parameters (body mass, jump height and push-off distance), allows to accurately evaluate force, velocity and power developed by lower limbs extensor muscles during squat jumps in field conditions.  相似文献   

15.
Training at the optimal load for peak power output (PPO) has been proposed as a method for enhancing power output, although others argue that the force, velocity, and PPO are of interest across the full range of loads. The aim of this study was to examine the influence of load on PPO, peak barbell velocity (BV), and peak vertical ground reaction force (VGRF) during the jump squat (JS) in a group of professional rugby players. Eleven male professional rugby players (age, 26 ± 3 years; height, 1.83 ± 6.12 m; mass, 97.3 ± 11.6 kg) performed loaded JS at loads of 20-100% of 1 repetition maximum (1RM) JS. A force plate and linear position transducer, with a mechanical braking unit, were used to measure PPO, VGRF, and BV. Load had very large significant effects on PPO (p < 0.001, partial η2 = 0.915); peak VGRF (p < 0.001, partial η2 = 0.854); and peak BV (p < 0.001, partial η2 = 0.973). The PPO and peak BV were the highest at 20% 1RM, though PPO was not significantly greater than that at 30% 1RM. The peak VGRF was significantly greater at 1RM than all other loads, with no significant difference between 20 and 60% 1RM. In resistance trained professional rugby players, the optimal load for eliciting PPO during the loaded JS in the range measured occurs at 20% 1RM JS, with decreases in PPO and BV, and increases in VGRF, as the load is increased, although greater PPO likely occurs without any additional load.  相似文献   

16.
The purpose of this article was to review a series of studies (n = 18) where muscle activation in the free barbell back squat was measured and discussed. The loaded barbell squat is widely used and central to many strength training programs. It is a functional and safe exercise that is obviously transferable to many movements in sports and life. Hence, a large and growing body of research has been published on various aspects of the squat. Training studies have measured the impact of barbell squat loading schemes on selected training adaptations including maximal strength and power changes in the squat. Squat exercise training adaptations and their impact on a variety of performance parameters, in particular countermovement jump, acceleration, and running speed, have also been reported. Furthermore, studies have reported on the muscle activation of the lower limb resulting from variations of squat depth, foot placement, training status, and training intensity. There have also been studies on the impact of squatting with or without a weight belt on trunk muscle activation (TMA). More recently, studies have reported on the effect of instability on TMA and squat performance. Research has also shown that muscle activation of the prime movers in the squat exercise increases with an increase in the external load. Also common variations such as stance width, hip rotation, and front squat do not significantly affect muscle activation. However, despite many studies, this information has not been consolidated, resulting in a lack of consensus about how the information can be applied. Therefore, the purpose of this review was to examine studies that reported muscle activation measured by electromyography in the free barbell back squat with the goal of clarifying the understanding of how the exercise can be applied.  相似文献   

17.
During the concentric movement of the bench press, there is an initial high-power push after chest contact, immediately followed by a characteristic area of low power, the so-called "sticking region." During high-intensity lifting, a decline in power can result in a failed lift attempt. The purpose of this study was to determine the validity of an optical encoder to measure power and then employ this device to determine power changes during the initial acceleration and sticking region during fatiguing repeated bench press training. Twelve subjects performed a free weight bench press, a Smith Machine back squat, and a Smith Machine 40-kg bench press throw for power validation measures. All barbell movements were simultaneously monitored using cinematography and an optical encoder. Eccentric and concentric mean and peak power were calculated using time and position data derived from each method. Validity of power measures between the video (criterion) and optical encoder scores were evaluated by standard error of the estimate (SEE) and coefficient of variation (CV). Seven subjects then performed 4 sets of 6 free weight bench press repetitions progressively increasing from 85 to 95% of their 6 repetition maximum, with each repetition continually monitored by an optical encoder. The SEE for power ranged from 3.6 to 14.4 W (CV, 1.0-3.0%; correlation, 0.97-1.00). During the free weight bench press training, peak power declined by approximately 55% (p < 0.01) during the initial acceleration phase of the final 2 repetitions of the final set. Although decreases in power of the sticking point were significant (p < 0.01), as early as repetition 5 (-40%) they reached critically low levels in the final 2 repetitions (>-95%). In conclusion, the optical encoder provided valid measures of kinetics during free weight resistance training movements. The decline in power during the initial acceleration phase appears a factor in a failed lift attempt at the sticking point.  相似文献   

18.
The kinematical parameters such as translational acceleration and angular acceleration in the upper limb of a weightlifter may change regularly during different phases of squat snatch. This study aims to make this question clear. At first, the joint coordinate system (JCS) of human upper limb based on the anatomical landmarks is defined. Then a novel method for calculating the kinematical parameters was brought forward, which was based on analyzing the relative position of the JCS to world coordinate system during an instantaneous situation and the relationship among each JCS at different times during squat snatch. Motion capture system is used to gather the data of the upper limb in an elite weightlifter during squat snatch (the mass of the barbell is 20 kg) and the method mentioned before is applied to analyze the data. Finally, the law of the change of kinematical parameters in each phase of squat snatch is found.  相似文献   

19.
The aims of this study were to compare the outcomes and provide reference data for a set of barbell mechanical parameters collected via a linear velocity transducer in 126 male sprinters (n = 62), rugby players (n = 32), and soccer players (n = 32). Bar-velocity, bar-force, and bar-power outputs were assessed in the jump-squat exercise with jump-squat height determined from bar-peak velocity. The test started at a load of 40% of the athletes’ body mass (BM), and a load of 10% of BM was gradually added until a clear decrement in the bar power was observed. Comparisons of bar variables among the three sports were performed using a one-way analysis of variance. Relative measures of bar velocity, force, and power, and jump-squat height were significantly higher in sprinters than in rugby (difference ranging between 5 and 35%) and soccer (difference ranging between 5 and 60%) players across all loads (40–110% of BM). Rugby players exhibited higher absolute bar-power (mean difference = 22%) and bar-force (mean difference = 16%) values than soccer players, but these differences no longer existed when the data were adjusted for BM (mean difference = 2.5%). Sprinters optimized their bar-power production at significantly greater relative loads (%BM) than rugby (mean difference = 22%) and soccer players (mean difference = 25%); nonetheless, all groups generated their maximum bar-power outputs at similar bar velocities. For the first time, we provided reference values for the jump-squat exercise for three different bar-velocity measures (i.e., mean, mean propulsive, and peak velocity) for sprinters, rugby players, and soccer players, over a wide range of relative loads. Practitioners can use these reference values to monitor their athletes and compare them with top-level sprinters and team-sport players.  相似文献   

20.
Physiological, anthropometric, and power profiling data were retrospectively analyzed from 4 elite taekwondo athletes from the Australian National Olympic team 9 weeks from Olympic departure. Power profiling data were collected weekly throughout the 9-week period. Anthropometric skinfolds generated a lean mass index (LMI). Physiological tests included a squat jump and bench throw power profile, bleep test, 20-m sprint test, running VO2max test, and bench press and squat 3 repetition maximum (3RM) strength tests. After this, the athletes power, velocity, and acceleration profile during unweighted squat jumps and single-leg jumps were tracked using a linear position transducer. Increases in power, velocity, and acceleration between weeks and bilateral comparisons were analyzed. Athletes had an LMI of 37.1 ± 0.4 and were 173.9 ± 0.2 m and 67 ± 1.1 kg. Relatively weaker upper body (56 ± 11.97 kg 3RM bench press) compared to lower body strength (88 ± 2.89 kg 3RM squat) was shown alongside a VO2max of 53.29 ml(-1)·min(-1)·kg, and a 20-m sprint time of 3.37 seconds. Increases in all power variables for single-leg squat and squat jumps were found from the first session to the last. Absolute peak power in single-leg squat jumps increased by 13.4-16% for the left and right legs with a 12.9% increase in squat jump peak power. Allometrically scaled peak power showed greater increases for single-leg (right leg: 18.55%; left: 23.49%) and squat jump (14.49%). The athlete's weight did not change significantly throughout the 9-week mesocycle. Progressions in power increases throughout the weeks were undulating and can be related to the intensity of the prior week's training and athlete injury. This analysis has shown that a 9-week mesocycle before Olympic departure that focuses on core lifts has the ability to improve power considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号