首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Food allergies are becoming increasingly prevalent, especially in young children. Epidemiological evidence from the past decade suggests a role of vitamin D in food allergy pathogenesis. Links have been made between variations in sunlight exposure, latitude, birth season and vitamin D status with food allergy risk. Despite the heightened interest in vitamin D in food allergies, it remains unclear by which exact mechanism(s) it acts. An understanding of the roles vitamin D plays within the immune system at the cellular and genetic levels, as well as the interplay between the microbiome and vitamin D, will provide insight into the importance of the vitamin in food allergies. Here, we discuss the effect of vitamin D on immune cell maturation, differentiation and function; microbiome; genetic and epigenetic regulation (eg DNA methylation); and how these processes are implicated in food allergies.  相似文献   

2.
维生素D3的生物效应及其作用的分子机制   总被引:1,自引:0,他引:1  
  相似文献   

3.
Randomised clinical trials and epidemiologic studies addressing the preventive effects of vitamin E supplementation against cardiovascular disease reported both positive and negative effects, and recent meta-analyses of the clinical studies were rather disappointing. In contrast to that, many animal studies clearly show a preventive action of vitamin E in several experimental settings, which can be explained by the molecular and cellular effects of vitamin E observed in cell cultures. This review is focusing on the molecular effects of vitamin E on the cells playing a role during atherosclerosis, in particular on the endothelial cells, vascular smooth muscle cells, monocytes/macrophages, T cells, and mast cells. Vitamin E may act by normalizing aberrant signal transduction and gene expression in antioxidant and non-antioxidant manners; in particular, over-expression of scavenger receptors and consequent foam cell formation can be prevented by vitamin E. In addition to that, the cellular effects of -tocopheryl phosphate and of EPC-K1, a composite molecule between -tocopheryl phosphate and l-ascorbic acid, are summarized.  相似文献   

4.
细胞衰老与肿瘤发生   总被引:3,自引:0,他引:3  
胡兵  安红梅  沈克平 《生命科学》2008,20(3):447-449
细胞衰老(cell senescence)是指细胞在信号转导作用下不可逆地脱离细胞周期并丧失增殖能力后进入的一种相对稳定的状态。细胞衰老有增殖衰老与早熟衰老两种形式:增殖衰老由端粒缩短激发的信号转导激发,与TP53/CDKN1a(p21^WAF-1/Cip1)/pRB/E2F信号通路密切相关;早熟衰老由细胞内在或外在急慢性应激信号引发,与TP53/CDKN1a(p21^WAF-1/Cip1)/pRB/E2F或CDKN2a(p16^ink4A)/pRB/E2F信号通路相关。目前研究已经证实早熟衰老是细胞在癌变过程中的天然屏障,是继DNA修复、细胞凋亡后的第三大细胞内在抗癌机制,在机体防止肿瘤形成中起重要作用。  相似文献   

5.
6.
Resveratrol, a natural polyphenol abundantly found in grape skins and red wine, possesses diverse biochemical and physiological actions, including anti-inflammatory, anti-oxidation, anti-proliferation and promotion of differentiation, and chemopreventive effects. Recently, it is attracting increased attention due to its health benefits, especially in common age-related diseases such as cardiovascular disease, cancer, type 2 diabetes, and neurological conditions. In this review, we discuss the latest cellular and molecular findings that account for the beneficial actions of resveratrol.  相似文献   

7.
Thiazolidinediones represent a class of molecules used in the treatment of type 2 diabetes mellitus. Despite interesting effects in lowering blood glucose and HbA1c levels durably, an augmentation of the fracture risk in women has emerged in the past years. This review is providing the readers with information about the cellular and molecular mechanisms involved in bone and bone cells in response to these drugs.  相似文献   

8.
Hormonal effects of vitamin D3 on epidermal melanocytes   总被引:1,自引:0,他引:1  
The role of cholecalciferol, 25(OH) D3, and 1,25(OH)2 D3, as modulators of melanocyte function and proliferation has been examined. Topical application of 100 micrograms cholecalciferol to the pinnal epidermis of DBA/2J mice for 5 or 10 days increased the number of L-dihydroxyphenylalanine-positive (DOPA-positive) melanocytes and had a synergistic effect with a low dose of ultraviolet B light (UVB). Application of 1 microgram 1,25(OH)2 D3 had a transient effect on epidermal melanocytes. Addition of cholecalciferol to pure cultures of human melanocytes did not alter their tyrosinase activity (therefore, melanin synthesis) or growth rate even after 72 hours of treatment. However, treatment of similar cultures with 1,25(OH)2 D3 at a concentration equal to or greater than 10(-8) M suppressed tyrosinase activity but did not affect proliferation. The effect of 25(OH) D3 was similar to, but lower in magnitude than, that of 1,25(OH)2 D3. We attempted to demonstrate the presence of specific receptors for 1,25(OH)2 D3 in normal human melanocytes using the monoclonal antibody (Mo Ab) 9A7 gamma raised against the receptor for 1,25(OH)2 D3. Melanocytes were exposed to 9A7 gamma and to a secondary biotinylated Ab and analyzed by the fluorescence activated cell sorter (FACS). An increase in the specific fluorescent signal was constantly observed. By using the immunoblotting technique, we observed a major immunoreactive species that migrated in the 53-kD region in normal melanocytes. The size of this major immunoreactive species was smaller in melanoma cells than in normal melanocytes. This correlates with the finding that the former cells were unresponsive to cholecalciferol, 25(OH) D3, or 1,25(OH)2 D3 treatment. These results predict a direct role for 1,25(OH)2 D3 as an effector of normal melanocyte function.  相似文献   

9.
10.
11.
Effects of unoprostone isopropyl (unoprostone), a prostaglandin metabolite analog; latanoprost, a PGF analog; and PGF were examined in HCN-1A cells, a model system for studies of large conductance Ca2+ activated K+(BK) channel activator-based neuroprotective agents. Unoprostone and latanoprost, both used as anti-glaucoma agents, have been suggested to act through FP receptors and have neuroprotective effects. Ion channel activation, plasma membrane polarization, [Ca2+]i changes and protection against long-term irreversible glutamate-induced [Ca2+]i increases were studied. Unoprostone activated iberiotoxin (IbTX)-sensitive BK channels in HCN-1A cells with an EC50 of 0.6 ± 0.2 nM and had no effect on Cl currents. Unoprostone caused IbTX-sensitive plasma membrane hyperpolarization that was insensitive to AL8810, an FP receptor antagonist. In contrast, latanoprost and PGF activated a Cl current sensitive to [Ca2+]i chelation, tamoxifen and AL8810, and caused IbTX-insensitive, AL8810-sensitive membrane depolarization consistent with FP receptor-mediated Ca2+ signaling Cl current activation. Latanoprost and PGF, but not unoprostone, increased [Ca2+]i. Unoprostone, PGF only partially, but not latanoprost protected HCN-1A cells against glutamate-induced Ca2+ deregulation. These findings show that unoprostone has a distinctly different mechanism of action from latanoprost and PGF. Whether unoprostone affects the BK channel directly or an unidentified signaling mechanism has not been determined.  相似文献   

12.
Effects of unoprostone isopropyl (unoprostone), a prostaglandin metabolite analog; latanoprost, a PGF(2alpha) analog; and PGF(2alpha) were examined in HCN-1A cells, a model system for studies of large conductance Ca(2+) activated K(+)(BK) channel activator-based neuroprotective agents. Unoprostone and latanoprost, both used as anti-glaucoma agents, have been suggested to act through FP receptors and have neuroprotective effects. Ion channel activation, plasma membrane polarization, [Ca(2+)](i) changes and protection against long-term irreversible glutamate-induced [Ca(2+)](i) increases were studied. Unoprostone activated iberiotoxin (IbTX)-sensitive BK channels in HCN-1A cells with an EC(50) of 0.6+/-0.2 nM and had no effect on Cl(-) currents. Unoprostone caused IbTX-sensitive plasma membrane hyperpolarization that was insensitive to AL8810, an FP receptor antagonist. In contrast, latanoprost and PGF(2alpha) activated a Cl(-) current sensitive to [Ca(2+)](i) chelation, tamoxifen and AL8810, and caused IbTX-insensitive, AL8810-sensitive membrane depolarization consistent with FP receptor-mediated Ca(2+) signaling Cl(-) current activation. Latanoprost and PGF(2alpha), but not unoprostone, increased [Ca(2+)](i). Unoprostone, PGF(2alpha) only partially, but not latanoprost protected HCN-1A cells against glutamate-induced Ca(2+) deregulation. These findings show that unoprostone has a distinctly different mechanism of action from latanoprost and PGF(2alpha). Whether unoprostone affects the BK channel directly or an unidentified signaling mechanism has not been determined.  相似文献   

13.
It is thought that every cell in the body expresses the vitamin D receptor, and therefore vitamin D may play a role in health and homeostasis of every organ system, including skeletal muscle. Human, animal, and cell culture studies have collectively shown that vitamin D affects muscle strength and function. Vitamin D functions in a plethora of cellular processes in skeletal muscle including calcium homeostasis, cell proliferation, cell differentiation, fiber size, prevention of fatty degeneration, protection against insulin resistance and arachidonic acid mobilization. These processes appear to be mediated by several signaling pathways affected by vitamin D. This review aims to explore the effects of vitamin D on skeletal muscle in each model system and to delineate potential cell signaling pathways affected by vitamin D.  相似文献   

14.
15.
Vitamin D deficiency is more common among African Americans (AAs) than among European Americans (EAs), and epidemiologic evidence links vitamin D status to many health outcomes. Two genome-wide association studies (GWAS) in European populations identified vitamin D pathway gene single-nucleotide polymorphisms (SNPs) associated with serum vitamin D [25(OH)D] levels, but a few of these SNPs have been replicated in AAs. Here, we investigated the associations of 39 SNPs in vitamin D pathway genes, including 19 GWAS-identified SNPs, with serum 25(OH)D concentrations in 652 AAs and 405 EAs. Linear and logistic regression analyses were performed adjusting for relevant environmental and biological factors. The pattern of SNP associations was distinct between AAs and EAs. In AAs, six GWAS-identified SNPs in GC, CYP2R1, and DHCR7/NADSYN1 were replicated, while nine GWAS SNPs in GC and CYP2R1 were replicated in EAs. A CYP2R1 SNP, rs12794714, exhibited the strongest signal of association in AAs. In EAs, however, a different CYP2R1 SNP, rs1993116, was the most strongly associated. Our models, which take into account genetic and environmental variables, accounted for 20 and 28 % of the variance in serum vitamin D levels in AAs and EAs, respectively.  相似文献   

16.
We employed a genetic approach to determine whether deficiency of 1,25-dihydroxyvitamin D (1,25(OH)2D) and deficiency of the vitamin D receptor (VDR) produce the same alterations in skeletal and calcium homeostasis and whether calcium can subserve the skeletal functions of 1,25(OH)2D and the VDR. Mice with targeted deletion of the 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha(OH)ase-/-) gene, the VDR gene, and both genes were exposed to 1) a high calcium intake, which maintained fertility but left mice hypocalcemic; 2) this intake plus three times weekly injections of 1,25(OH)2D3, which normalized calcium in the 1alpha(OH)ase-/- mice only; or 3) a "rescue" diet, which normalized calcium in all mutants. These regimens induced different phenotypic changes, thereby disclosing selective modulation by calcium and the vitamin D system. Parathyroid gland size and the development of the cartilaginous growth plate were each regulated by calcium and by 1,25(OH)2D3 but independent of the VDR. Parathyroid hormone secretion and mineralization of bone reflected ambient calcium levels rather than the 1,25(OH)2D/VDR system. In contrast, increased calcium absorption and optimal osteoblastogenesis and osteoclastogenesis were modulated by the 1,25(OH)2D/VDR system. These studies indicate that the calcium ion and the 1,25(OH)2D/VDR system exert discrete effects on skeletal and calcium homeostasis, which may occur coordinately or independently.  相似文献   

17.
Low vitamin D status is associated with an increased risk of Th1 mediated autoimmune diseases like inflammatory bowel disease. 1,25(OH)(2)D(3) treatments have been shown to suppress Th1 mediated immunity and protect animals from experimental autoimmunity. Th1 mediated immunity is important for clearance of a number of different infectious diseases. For tuberculosis 1,25(OH)(2)D(3) treatment is associated with decreased Th1 mediated immunity but increased bactericidal activity. Systemic candidiasis is unaffected by 1,25(OH)(2)D(3) treatment. The seemingly paradoxical effects of 1,25(OH)(2)D(3) and vitamin D on Th1 mediated autoimmunity versus infectious immunity point to a broad array of vitamin D targets in the immune system. The interplay of these vitamin D targets and their impact on the host-immune response then dictate the outcome.  相似文献   

18.
Radiation-induced intestinal injury (RIII) is a common complication after radiation therapy in patients with pelvic, abdominal, or retroperitoneal tumours. Recently, in the model of DSS (Dextran Sulfate Sodium Salt) -induced intestinal inflammatory injury, it has been found in the study that transgenic mice expressing hVDR in IEC (Intestinal Epithelial Cell) manifest highly anti-injury properties in colitis, suggesting that activated VDR in the epithelial cells of intestine may inhibit colitis by protecting the mucosal epithelial barrier. In this study, we investigated the effect of the expression and regulation of VDR on the protection of RIII, and the radiosensitivity in vitro experiments, and explored the initial mechanism of VDR in regulating radiosensitivity of IEC. As a result, we found that the expression of VDR in intestinal tissues and cells in mice can be induced by ionizing radiation. VDR agonists are able to prolong the average survival time of mice after radiation and reduce the radiation-induced intestinal injury. For lack of vitamin D, the radiosensitivity of intestinal epithelial cells in mice increased, which can be reduced by VDR activation. Ensuing VDR activation, the radiation-induced intestinal stem cells damage is decreased, and the regeneration and differentiation of intestinal stem cells is promoted as well. Finally, on the basis of sequencing analysis, we validated and found that VDR may target the HIF/PDK1 pathway to mitigate RIII. We concluded that agonism or upregulation of VDR expression attenuates radiation-induced intestinal damage in mice and promotes the repair of epithelial damage in intestinal stem cells.  相似文献   

19.
20.
Cellular targets and host genes in multistage carcinogenesis   总被引:1,自引:0,他引:1  
Recent studies indicate that although cellular DNA is the critical target in the action of initiating carcinogens, specific membrane-associated receptors mediate the actions of certain tumor promoters. A stereochemical model is presented to explain how three different types of tumor promoters (phorbol esters, indole alkaloids, and polyacetates) can interact with the same class of cellular receptors. Multistage chemical carcinogenesis might involve progressive alterations in the expression of cellular DNA sequences homologous to oncogenes and regulatory sequences in certain retroviruses. We found that the oncogene c-mos is not rearranged or expressed in a series of carcinogen-transformed murine C3H 10T112 cells. These cells do express, however, a unique set of poly(A)+ RNAs that contain sequences homologous to the Moloney leukemia virus long terminal repeat sequence. Studies are in progress to determine the significance of this finding with respect to the carcinogenic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号