首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yang YH  Zhou H  Binmadi NO  Proia P  Basile JR 《PloS one》2011,6(10):e25826

Background

The semaphorins and their receptors, the plexins, are proteins related to c-Met and the scatter factors that have been implicated in an expanding signal transduction network involving co-receptors, RhoA and Ras activation and deactivation, and phosphorylation events. Our previous work has demonstrated that Semaphorin 4D (Sema4D) acts through its receptor, Plexin-B1, on endothelial cells to promote angiogenesis in a RhoA and Akt-dependent manner. Since NF-κB has been linked to promotion of angiogenesis and can be activated by Akt in some contexts, we wanted to examine NF-κB in Sema4D treated cells to determine if there was biological significance for the pro-angiogenic phenotype observed in endothelium.

Methods/Principal Findings

Using RNA interference techniques, gel shifts and NF-κB reporter assays, we demonstrated NF-κB translocation to the nucleus in Sema4D treated endothelial cells occurring downstream of Plexin-B1. This response was necessary for endothelial cell migration and capillary tube formation and protected endothelial cells against apoptosis as well, but had no effect on cell proliferation. We dissected Plexin-B1 signaling with chimeric receptor constructs and discovered that the ability to activate NF-κB was dependent upon Plexin-B1 acting through Rho and Akt, but did not involve its role as a Ras inhibitor. Indeed, inhibition of Rho by C3 toxin and Akt by LY294002 blocked Sema4D-mediated endothelial cell migration and tubulogenesis. We also observed that Sema4D treatment of endothelial cells induced production of the NF-κB downstream target IL-8, a response necessary for angiogenesis. Finally, we could show through co-immunofluorescence for p65 and CD31 that Sema4D produced by tumor xenografts in nude mice activated NF-κB in vessels of the tumor stroma.

Conclusion/Significance

These findings provide evidence that Sema4D/Plexin-B1-mediated NF-κB activation and IL-8 production is critical in the generation a pro-angiogenic phenotype in endothelial cells and suggests a new therapeutic target for the anti-angiogenic treatment of some cancers.  相似文献   

2.
Mast cell-derived chymase is implicated in myocardial fibrosis (MF), but the underlying mechanism of intracellular signaling remains unclear. Transforming growth factor-β1 (TGF-β1) is identified as the most important profibrotic cytokine, and Smad proteins are essential, but not exclusive downstream components of TGF-β1 signaling. Moreover, novel evidence indicates that there is a cross talk between Smad and mitogen-activated protein kinase (MAPK) signaling cascade. We investigated whether chymase activated TGF-β1/Smad pathway and its potential role in MF by evaluating cardiac fibroblasts (CFs) proliferation and collagen synthesis in neonatal rats. MTT assay and 3H-Proline incorporation revealed that chymase induced CFs proliferation and collagen synthesis in a dose-dependent manner. RT-PCR and Western blot assay demonstrated that chymase not only increased TGF-β1 expression but also upregulated phosphorylated-Smad2/3 protein. Furthermore, pretreatment with TGF-β1 neutralizing antibody suppressed chymase-induced cell growth, collagen production, and Smad activation. In contrast, the blockade of angiotensin II receptor had no effects on chymase-induced production of TGF-β1 and profibrotic action. Additionally, the inhibition of MAPK signaling had no effect on Smad activation elicited by chymase. These results suggest that chymase can promote CFs proliferation and collagen synthesis via TGF-β1/Smad pathway rather than angiotensin II, which is implicated in the process of MF.  相似文献   

3.
Myocardial infarction (MI) is one of the leading causes of death worldwide, and due to the widespread and irreversible damage caused, new therapeutic treatments are urgently needed in order to limit the degree of ischaemic damage following MI. Aberrant activation of Wnt/β-catenin signalling pathway often occurs during cardiovascular diseases including MI, which results in excess production of reactive oxygen species (ROS) and further promotes myocardial dysfunction. Huoxin pill (HXP) is a Traditional Chinese Medicine formula that has been widely used in the treatment of coronary heart disease and angina; however, its mechanisms remain unclear. Here, we performed mouse models of MI and examined the effects and mechanisms of HXP in protecting against MI-induced ischaemic damage. Our study showed that administration with HXP robustly protected against MI-induced cardiac injuries, decreased infarct size and improved cardiac function. Moreover, HXP attenuated ischaemia-induced DNA damage occurrence in vivo and H2O2-induced DNA damage occurrence in vitro, via potent inhibition of adverse Wnt/β‑catenin signalling activation. Our study thus elucidated the role and mechanism of HXP in protecting against MI and oxidative stress-induced injuries and suggests new therapeutic strategies in ischaemic heart disease via inhibition of Wnt/β-catenin signalling pathway.  相似文献   

4.
Bai D  Gao Q  Li C  Ge L  Gao Y  Wang H 《Cellular signalling》2012,24(7):1426-1432
Persistent fibroblast activation in wound repair is believed to be the key reason for fibrosis and transforming growth factor (TGF)β is considered as one of the key mediators for the fibrogenic response, with the detailed mechanism largely unknown. Here we found that TGFβ1 treatment could induce a significant increase of endogenous TGFβ1 expression by enhancing the mRNA stability in cardiac fibroblasts. Further study revealed that TGFβ1 treatment translocated the nuclear HuR into cytoplasm, which in turn bound the ARE in the 3'UTR of TGFβ1 and increased the mRNA stability as seen from the RNA-IP and reporter assay. Knockdown of HuR decreased the endogenous expression of TGFβ1 under exogenous TGFβ1 treatment, simultaneously with the decrease of Col1a, Col3a and fibronectin expression. Our study here established a TGFβ1/HuR feedback circuit regulating the fibrogenic response in fibroblasts, and targeting this feedback loop is of great potential to control fibrosis.  相似文献   

5.
6.
Activation of the renin-angiotensin system (RAS) plays a pivotal role in mediating hypertension, chronic kidney and cardiovascular diseases. As Wnt/β-catenin regulates multiple RAS genes, we speculated that this developmental signaling pathway might also participate in blood pressure (BP) regulation. To test this, we utilized two rat models of experimental hypertension: chronic angiotensin II infusion and remnant kidney after 5/6 nephrectomy. Inhibition of Wnt/β-catenin by ICG-001 blunted angiotensin II-induced hypertension. Interestingly, angiotensin II was able to induce the expression of multiple Wnt genes in vivo and in vitro, thereby creating a vicious cycle between Wnt/β-catenin and RAS activation. In the remnant kidney model, renal β-catenin was upregulated, and delayed administration of ICG-001 also blunted BP elevation and abolished the induction of angiotensinogen, renin, angiotensin-converting enzyme and angiotensin II type 1 receptor. ICG-001 also reduced albuminuria, serum creatinine and blood urea nitrogen, and inhibited renal expression of fibronectin, collagen I and plasminogen activator inhibitor-1, and suppressed the infiltration of CD3+ T cells and CD68+ monocytes/macrophages. In vitro, incubation with losartan prevented Wnt/β-catenin-mediated fibronectin, α-smooth muscle actin and Snail1 expression, suggesting that the fibrogenic action of Wnt/β-catenin is dependent on RAS activation. Taken together, these results suggest an intrinsic linkage of Wnt/β-catenin signaling with BP regulation. Our studies also demonstrate that hyperactive Wnt/β-catenin can drive hypertension and kidney damage via RAS activation.  相似文献   

7.
Despite decades of progress in cardiovascular biology, heart disease remains the leading cause of death in the developed world. Recently, cell-based therapy has emerged as a promising avenue for future therapeutics. However, the molecular signals that regulate cardiac progenitor cells are not well-understood. Wnt/β-catenin signaling is essential for expansion and differentiation of cardiac progenitors in mouse embryos and in the embryonic stem cell system. Studies from our laboratory and others highlight the pivotal roles of Wnt/β-catenin signaling in the multiple steps of cardiogenesis and provide insights into understanding the complex regulation of cardiac progenitors. Here we discuss the required roles of Wnt/β-catenin signaling at the different stages of heart development.  相似文献   

8.
Wnt proteins can activate distinct signaling pathways, but little is known about the mechanisms regulating pathway selection. Here we show that the metastasis-associated transmembrane protein Wnt-activated inhibitory factor 1 (Waif1/5T4) interferes with Wnt/β-catenin signaling and concomitantly activates noncanonical Wnt pathways. Waif1 inhibits β-catenin signaling in zebrafish and Xenopus embryos as well as in mammalian cells, and zebrafish waif1a acts as a direct feedback inhibitor of wnt8-mediated mesoderm and neuroectoderm patterning during zebrafish gastrulation. Waif1a binds to the Wnt coreceptor LRP6 and inhibits Wnt-induced LRP6 internalization into endocytic vesicles, a process that is required for pathway activation. Thus, Waif1a modifies Wnt/β-catenin signaling by regulating LRP6 subcellular localization. In addition, Waif1a enhances β-catenin-independent Wnt signaling in zebrafish embryos and Xenopus explants by promoting a noncanonical function of Dickkopf1. These results suggest that Waif1 modulates pathway selection in Wnt-receiving cells.  相似文献   

9.
10.
Cardiac fibroblasts (CFs) can over-proliferate during the progression of cardiac fibrosis, accompanied by a net accumulation of extracellular matrix proteins. Based on the profibrotic actions of transforming growth factor beta 1 (TGFβ1), investigating the mechanisms of TGFβ1 function in CFs may provide new directions to treatment for cardiac fibrosis. microRNAs (miRNAs) could control CFs proliferation or remodeling via binding to 3′-untranslated region of messenger RNA (mRNA) to negatively regulate gene expression. In the present study, we downloaded several microarray analyses results from GEO attempting to identify miRNAs and possible downstream targets that may be involved in TGF-β1 function in CFs and to detect the cellular and molecular functions of the identified miRNA–mRNA axis. Here, we identified miR-675 as a downregulated miRNA by TGFβ1 by bioinformatics analyses and experimental verification. Upon TGFβ1 stimulation, the protein levels of Α-SMAΑ-SMA, collagen I, and POSTN, and the secreted collagen in the cell culture supernatant significantly increased, whereas the miR-675 expression decreased. Smads mediate TGFβ1-induced suppression on miR-675 via binding miR-675 promoter region. miR-675 overexpression could inhibit, whereas miR-675 inhibition could enhance TGFβ1-induced mouse CFs (MCF) remodeling and proliferation. TGFβ receptor 1 (TGFβR1), a critical receptor in TGFβ1/Smad signaling, is a direct downstream target of miR-675. TGFβR1 overexpression significantly reverses the effect of miR-675 overexpression on MCF remodeling and proliferation. In summary, miR-675 targets TGFβR1 to attenuate TGFβ1-induced MCF remodeling and proliferation. We demonstrate a novel mechanism of the Smads/miR-675/TGFβR1 axis modulating TGFβ1-induced MCF remodeling and proliferation.  相似文献   

11.
12.
13.
Wnt/β-catenin信号通路是一条高度保守的细胞内信号转导通路,具有介导细胞黏附、调控增殖、凋亡、参与炎症反应等多种生物学功能,在多种细菌的感染和致病过程中发挥重要作用。研究Wnt/β-catenin信号通路激活的分子机制及其在疾病发生、发展中的作用,不但可以了解细菌的致病机制,还为其治疗提供了新的靶点和策略。现将该信号通路在衣原体、结核分枝杆菌、铜绿假单胞菌和幽门螺杆菌致病中的作用作一概述。  相似文献   

14.
15.
T helper cell 17 (Th17), one type of CD4+ T cell, plays an important role in regulating the acute lung injury (ALI) inflammatory response. Recent studies showed that Wnt/β-catenin pathway could modulate the differentiation and the function of CD4+ T cell. However, whether Wnt/β-catenin could regulate the differentiation and function of Th17 in the development and progress of ALI induced by lipopolysaccharide (LPS) is still unknown. To test this, we used dickkopf1 (Dkk-1) to block the Wnt/β-catenin pathway and LiCl to activate the Wnt/β-catenin pathway by instillation to the murine model of ALI. Our results revealed that activation of Wnt/β-catenin pathway significantly aggravated the LPS-induced lung inflammation. Meanwhile, we observed that activation of Wnt/β-catenin pathway promoted Th17 response by analyzing CD4+ T cells and the related cytokines secretions. Enhanced Th17 response was responsible for the further neutrophils infiltration and pro-inflammatory cytokines production. In addition, activation of Wnt/β-catenin pathway resulted in induced expression of retinoic acid related orphan receptor-γt (RORγt) via histone acetyltransferase p300. These data suggested that Wnt/β-catenin pathway might be a potential target to treat the LPS-induced inflammation in ALI.  相似文献   

16.
Nature's models of repair and (or) regeneration provide substantial evidence that a natural healing process may exist in the heart. The potential for repair and (or) regeneration has been evolutionarily conserved in mammals, and seems to be restricted to the early developmental stages. This window of regeneration is reactivated during the disease state in which fetal gene reprogramming occurs in response to stress. Analogies exist between the damaged and developing heart, indicating that a regulatory network that drives embryonic heart development may control aspects of heart repair and (or) regeneration. In this context, thyroid hormone (TH), which is a critical regulator of the maturation of the myocardium, appears to have a reparative role later in adult life. Changes in TH - thyroid hormone receptor (TR) homeostasis govern the return of the injured myocardium to the fetal phenotype. Accordingly, TH can induce cardiac repair and (or) regeneration by reactivating developmental gene programming. As a proof of concept in humans, TH is found to be an independent determinant of functional recovery and mortality after myocardial infarction. The potential of TH to regenerate and (or) repair the ischemic myocardium is now awaited to be tested in clinical trials.  相似文献   

17.
Zhu  Qi-Zhou  Liu  Hao-Yue  Zhao  Xiao-Yan  Qiu  Le-Jia  Zhou  Ting-Ting  Wang  Xue-Ying  Chen  He-Ping  Xiao  Zhong-Qing 《Molecular biology reports》2021,48(8):6075-6083
Molecular Biology Reports - Endometrial cancer is generally one of the most evident malignant tumours of the female reproductive system, and the mechanisms underlying its cell proliferation and...  相似文献   

18.
U2 (urotensin-2) is the most potent vasoconstrictor in mammals which is involved in cardiac remodelling, including cardiac hypertrophy and cardiac fibrosis. Although the cellular mechanisms of the U2-induced vasoconstriction have been extensively studied, the signalling pathways involved in U2-induced TGF-β1 (transforming growth factor-β1) expression and collagen synthesis remain unclear. In this study, we show that U2 promoted collagen synthesis and ERK1/2 (extracellular signal-regulated kinase 1/2) activation in neonatal cardiac fibroblasts. The U2-induced collagen synthesis and TGF-β1 production were significantly but not completely inhibited by blocking ERK1/2. Both ERK1/2 inhibitor and TGF-β1 antibody could separately inhibit U2-induced collagen synthesis, and the synergistic inhibition effect was observed by blocking ERK1/2 and TGF-β1 simultaneously. These data suggest that U2 promotes collagen synthesis via ERK1/2-dependent and independent TGF-β1 pathway in neonatal cardiac fibroblasts.  相似文献   

19.
Numerous studies have shown that extracellular matrix (ECM)-based scaffolds are suitable for dermal constructs for the differentiation of various cell types in vitro and for constructive tissue remodeling after implantation in vivo. However, a shortcoming of these ECM materials is its limited elastogenesis. Elastic fibers constitute an essential component of mammalian connective tissue and the presence of elastic fibers is crucial for the proper function of the cardiovascular, pulmonary, and intestinal systems. Since it is still largely unknown how cells coordinate the molecular events of elastic-fiber assembly, understanding the ability to regenerate elastic fibers in tissues remains a significant challenge. For this reason, human neonatal dermal fibroblasts (HDFneo) were analyzed for their potential to serve as a cell culture model for elastic fiber assembly. Using optical technologies such as multiphoton laser-scanning microscopy (MPSLM) we demonstrate that HDFneo stimulated with transforming growth factor β1 (TGF-β1) are able to produce a distinct and complex elastic fiber system in vitro. As shown by the desmosine and isodesmosine content, crosslinked elastic fibers were formed within the 3D ECM-based scaffold. This tissue-engineered dermal construct may prove to be an effective template for the development of medicinal approaches in regenerative soft skin tissue reconstruction through TGF-β1 induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号