首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using ANOVA to analyze microarray data   总被引:6,自引:0,他引:6  
Churchill GA 《BioTechniques》2004,37(2):173-5, 177
ANOVA provides a general approach to the analysis of single and multiple factor experiments on both one- and two-color microarray platforms. Mixed model ANOVA is important because in many microarray experiments there are multiple sources of variation that must be taken into consideration when constructing tests for differential expression of a gene. The genome is large, and the signals of expression change can be small, so we must rely on rigorous statistical methods to distinguish signal from noise. We apply statistical tests to ensure that we are not just making up stories based on seeing patterns where there may be none.  相似文献   

2.
Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent “noise” within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.  相似文献   

3.
4.
Statistical tests for differential expression in cDNA microarray experiments   总被引:13,自引:0,他引:13  
Extracting biological information from microarray data requires appropriate statistical methods. The simplest statistical method for detecting differential expression is the t test, which can be used to compare two conditions when there is replication of samples. With more than two conditions, analysis of variance (ANOVA) can be used, and the mixed ANOVA model is a general and powerful approach for microarray experiments with multiple factors and/or several sources of variation.  相似文献   

5.

Background  

Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data.  相似文献   

6.
7.
8.
Lack of adequate statistical methods for the analysis of microarray data remains the most critical deterrent to uncovering the true potential of these promising techniques in basic and translational biological studies. The popular practice of drawing important biological conclusions from just one replicate (slide) should be discouraged. In this paper, we discuss some modern trends in statistical analysis of microarray data with a special focus on statistical classification (pattern recognition) and variable selection. In addressing these issues we consider the utility of some distances between random vectors and their nonparametric estimates obtained from gene expression data. Performance of the proposed distances is tested by computer simulations and analysis of gene expression data on two different types of human leukemia. In experimental settings, the error rate is estimated by cross-validation, while a control sample is generated in computer simulation experiments aimed at testing the proposed gene selection procedures and associated classification rules.  相似文献   

9.
Microarray data should be interpreted in the context of existing biological knowledge. Here we present integrated analysis of microarray data and gene function classification data using homogeneity analysis. Homogeneity analysis is a graphical multivariate statistical method for analyzing categorical data. It converts categorical data into graphical display. By simultaneously quantifying the microarray-derived gene groups and gene function categories, it captures the complex relations between biological information derived from microarray data and the existing knowledge about the gene function. Thus, homogeneity analysis provides a mathematical framework for integrating the analysis of microarray data and the existing biological knowledge.  相似文献   

10.
11.
12.
The major goal of two-color cDNA microarray experiments is to measure the relative gene expression level (i.e., relative amount of mRNA) of each gene between samples in studies of gene expression. More specifically, given an N-sample experiment, we need all N(N - 1)/2 relative expression levels of all sample pairs of each gene for identification of the differentially expressed genes and for clustering of gene expression patterns. However, the intensities observed from two-color cDNA microarray experiments do not simply represent the relative gene expression level. They are composed of signal (gene expression level), noise, and other factors. In discussions on the experimental design of two-color cDNA microarray experiments, little attention has been given to the fact that different combinations of test and control samples will produce microarray intensities data with varying intrinsic composition of factors. As a consequence, not all experimental designs for two-color cDNA microarray experiments are able to provide all possible relative gene expression levels. This phenomenon has never been addressed. To obtain all possible relative gene expression levels, a novel method for two-color cDNA microarray experimental design evaluation is necessary that will allow the making of an accurate choice. In this study, we propose a model-based approach to illustrate how the factor composition of microarray intensities changed with different experimental designs in two-color cDNA microarray experiments. By analyzing 12 experimental designs (including 5 general forms), we demonstrate that not all experimental designs are able to provide all possible relative gene expression levels due to the differences in factor composition. Our results indicate that whether an experimental design can provide all possible relative expression levels of all sample pairs for each gene should be the first criterion to be considered in an evaluation of experimental designs for two-color cDNA microarray experiments.  相似文献   

13.
DNA microarray data are affected by variations from a number of sources. Before these data can be used to infer biological information, the extent of these variations must be assessed. Here we describe an open source software package, lcDNA, that provides tools for filtering, normalizing, and assessing the statistical significance of cDNA microarray data. The program employs a hierarchical Bayesian model and Markov Chain Monte Carlo simulation to estimate gene-specific confidence intervals for each gene in a cDNA microarray data set. This program is designed to perform these primary analytical operations on data from two-channel spotted, or in situ synthesized, DNA microarrays.  相似文献   

14.
Measurements of gene expression from microarray experiments are highly dependent on experimental design. Systematic noise can be introduced into the data at numerous steps. On Illumina BeadChips, multiple samples are assayed in an ordered series of arrays. Two experiments were performed using the same samples but different hybridization designs. An experiment confounding genotype with BeadChip and treatment with array position was compared to another experiment in which these factors were randomized to BeadChip and array position. An ordinal effect of array position on intensity values was observed in both experiments. We demonstrate that there is increased rate of false-positive results in the confounded design and that attempts to correct for confounded effects by statistical modeling reduce power of detection for true differential expression. Simple analysis models without post hoc corrections provide the best results possible for a given experimental design. Normalization improved differential expression testing in both experiments but randomization was the most important factor for establishing accurate results. We conclude that lack of randomization cannot be corrected by normalization or by analytical methods. Proper randomization is essential for successful microarray experiments.  相似文献   

15.
16.
There are still numerous challenges to be overcome in microarray data analysis because advanced, state-of-the-art analyses are restricted to programming users. Here we present the Gene Expression Analysis Platform, a versatile, customizable, optimized, and portable software developed for microarray analysis. GEAP was developed in C# for the graphical user interface, data querying, storage, results filtering and dynamic plotting, and R for data processing, quality analysis, and differential expression. Through a new automated system that identifies microarray file formats, retrieves contents, detects file corruption, and solves dependencies, GEAP deals with datasets independently of platform. GEAP covers 32 statistical options, supports quality assessment, differential expression from single and dual-channel experiments, and gene ontology. Users can explore results by different plots and filtering options. Finally, the entire data can be saved and organized through storage features, optimized for memory and data retrieval, with faster performance than R. These features, along with other new options, are not yet present in any microarray analysis software. GEAP accomplishes data analysis in a faster, straightforward, and friendlier way than other similar software, while keeping the flexibility for sophisticated procedures. By developing optimizations, unique customizations and new features, GEAP is destined for both advanced and non-programming users.  相似文献   

17.
In the last years, biostatistical research has begun to apply linear models and design theory to develop efficient experimental designs and analysis tools for gene expression microarray data. With two-colour microarrays, direct comparisons of RNA-targets are possible and lead to incomplete block designs. In this setting, efficient designs for simple and factorial microarray experiments have mainly been proposed for technical replicates. But for biological replicates, which are crucial to obtain inference that can be generalised to a biological population, this question has only been discussed recently and is not fully solved yet. In this paper, we propose efficient designs for independent two-sample experiments using two-colour microarrays enabling biologists to measure their biological random samples in an efficient manner to draw generalisable conclusions. We give advice for experimental situations with differing group sizes and show the impact of different designs on the variance and degrees of freedom of the test statistics. The designs proposed in this paper can be evaluated using SAS PROC MIXED or S+/R lme.  相似文献   

18.
19.
20.
INTRODUCTION: Microarray experiments often have complex designs that include sample pooling, biological and technical replication, sample pairing and dye-swapping. This article demonstrates how statistical modelling can illuminate issues in the design and analysis of microarray experiments, and this information can then be used to plan effective studies. METHODS: A very detailed statistical model for microarray data is introduced, to show the possible sources of variation that are present in even the simplest microarray experiments. Based on this model, the efficacy of common experimental designs, normalisation methodologies and analyses is determined. RESULTS: When the cost of the arrays is high compared with the cost of samples, sample pooling and spot replication are shown to be efficient variance reduction methods, whereas technical replication of whole arrays is demonstrated to be very inefficient. Dye-swap designs can use biological replicates rather than technical replicates to improve efficiency and simplify analysis. When the cost of samples is high and technical variation is a major portion of the error, technical replication can be cost effective. Normalisation by centreing on a small number of spots may reduce array effects, but can introduce considerable variation in the results. Centreing using the bulk of spots on the array is less variable. Similarly, normalisation methods based on regression methods can introduce variability. Except for normalisation methods based on spiking controls, all normalisation requires that most genes do not differentially express. Methods based on spatial location and/or intensity also require that the nondifferentially expressing genes are at random with respect to location and intensity. Spotting designs should be carefully done so that spot replicates are widely spaced on the array, and genes with similar expression patterns are not clustered. DISCUSSION: The tools for statistical design of experiments can be applied to microarray experiments to improve both efficiency and validity of the studies. Given the high cost of microarray experiments, the benefits of statistical input prior to running the experiment cannot be over-emphasised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号