首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP-dependent Clp protease in plant chloroplasts consists of a heterogeneous proteolytic core containing multiple ClpP and ClpR paralogues. In this study, we have examined in detail the only viable knockout mutant to date of one of these subunits in Arabidopsis thaliana, ClpR1. Loss of ClpR1 caused a slow-growth phenotype, with chlorotic leaves during early development that later partially recovered upon maturity. Analysis of the Clp proteolytic core in the clpR1 mutant (clpR1-1) revealed approx. 10% of the wild-type levels remaining, probably due to a relative increase in the closely related ClpR3 protein and its partial substitution of ClpR1 in the core complex. A proteomic approach using an in organello proteolytic assay revealed 19 new potential substrates for the chloroplast Clp protease. Many of these substrates were constitutive enzymes involved in different metabolic pathways, including photosynthetic carbon fixation, nitrogen metabolism and chlorophyll/haem biosynthesis, whereas others function in housekeeping roles such as RNA maturation, protein synthesis and maturation, and recycling processes. In contrast, degradation of the stress-related chloroplast proteins Hsp21 (heat-shock protein 21) and lipoxygenase 2 was unaffected in the clpR1-1 line and thus not facilitated by the Clp protease. Overall, we show that the chloroplast Clp protease is principally a constitutive enzyme that degrades numerous stromal proteins, a feature that almost certainly underlies its vital importance for chloroplast function and plant viability.  相似文献   

2.
《Annals of botany》1999,83(6):593-599
Proteases are critical regulatory factors for many metabolic cellular processes as well as being vital for degrading proteins damaged during environmental stresses. Many of those responsible for targeted protein degradation require the hydrolysis of ATP, and one class that has attracted much attention recently are the Clp proteases. They are among the best characterized proteases to date, and were the first shown to rely on an ATPase regulatory subunit possessing molecular chaperone activity, which functions both within the proteolytic complex and independently. A range of Clp proteins has been identified from many different bacteria and eukaryotes, with by far the greatest number and diversity of forms in oxygenic photobionts such as cyanobacteria and higher plants. Functionally, Clp proteins have also evolved into one of the more critical proteolytic enzymes within photobionts, and it is now somewhat of a paradox that we currently know least about Clp protease functions in the photosynthetic organisms, where they have their most important roles. This discrepancy is now being addressed, with studies on Clp protein in cyanobacteria and, in an increasing number, in higher plants.  相似文献   

3.
A 350-kDa ClpP protease complex with 10 different subunits was identified in chloroplast of Arabidopsis thaliana, using Blue-Native gel electrophoresis, followed by matrix-assisted laser desorption ionization time-of-flight and nano-electrospray tandem mass spectrometry. The complex was copurified with the thylakoid membranes, and all identified Clp subunits show chloroplast targeting signals, supporting that this complex is indeed localized in the chloroplast. The complex contains chloroplast-encoded pClpP and six nuclear-encoded proteins nCpP1-6, as well as two unassigned Clp homologues (nClpP7, nClpP8). An additional Clp protein was identified in this complex; it does not belong to any of the known Clp genes families and is here assigned ClpS1. Expression and accumulation of several of these Clp proteins have never been shown earlier. Sequence and phylogenetic tree analysis suggests that nClpP5, nClpP2, and nClpP8 are not catalytically active and form a new group of Clp higher plant proteins, orthologous to the cyanobacterial ClpR protein, and are renamed ClpR1, -2, and -3, respectively. We speculate that ClpR1, -2, and -3 are part of the heptameric rings, whereas ClpS1 is a regulatory subunit positioned at the axial opening of the ClpP/R core. Several truncations and errors in intron and exon prediction of the annotated Clp genes were corrected using mass spectrometry data and by matching genomic sequences with cDNA sequences. This strategy will be widely applicable for the much needed verification of protein prediction from genomic sequence. The extreme complexity of the chloroplast Clp complex is discussed.  相似文献   

4.
Hsp100/Clp protease complexes are molecular machines important for cellular protein homeostasis and are concurrently embedded in the control of various signal transduction networks by regulatory proteolysis. In Mycobacteria, the genes encoding the components of these Hsp100/Clp protease complexes are essential for growth and were identified as targets for antibiotics, with a new antimicrobial mechanism, that are active on slow growing or even dormant cells. Schmitz and Sauer (2014) report the biochemical characterization of mycobacterial Hsp100/Clp protease complexes actively degrading folded substrate proteins. Their results suggest an unusual activation mechanism for this protease complex and will set the stage for further mechanistic studies of antibiotics acting on this new cellular target.  相似文献   

5.
The ATP-dependent Clp protease in chloroplasts of higher plants   总被引:7,自引:1,他引:7  
The best-known proteases in plastids are those that belong to families common to eubacteria. One of the first identified was the ATP-dependent caseinolytic protease (Clp), whose structure and function have been well characterized in Escherichia coli . Plastid Clp proteins in higher plants are surprisingly numerous and diverse, with at least 16 distinct Clp proteins in the model plant Arabidopsis thaliana . Multiple paralogues exist for several of the different types of plastid Clp protein, with the most extreme being five for the proteolytic subunit ClpP. Both biochemical and genetic studies have recently begun to reveal the intricate structural interactions between the various Clp proteins, and their importance for chloroplast function and plant development. Much of the recent data suggests that the function of many of the Clp proteins probably affects more specific processes within chloroplasts, in addition to the more general 'housekeeping' role previously assumed.  相似文献   

6.
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC-ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.  相似文献   

7.
Tetradecameric Clp protease core complexes in non-photosynthetic plastids of roots, flower petals, and in chloroplasts of leaves of Arabidopsis thaliana were purified based on native mass and isoelectric point and identified by mass spectrometry. The stoichiometry between the subunits was determined. The protease complex consisted of one to three copies of five different serine-type protease Clp proteins (ClpP1,3-6) and four non-proteolytic ClpR proteins (ClpR1-4). Three-dimensional homology modeling showed that the ClpP/R proteins fit well together in a tetradecameric complex and also indicated unique contributions for each protein. Lateral exit gates for proteolysis products are proposed. In addition, ClpS1,2, unique to land plants, tightly interacted with this core complex, with one copy of each per complex. The three-dimensional modeling show that they do fit well on the axial sites of the ClpPR cores. In contrast to plastids, plant mitochondria contained a single approximately 320-kDa homo-tetradecameric ClpP2 complex, without association of ClpR or ClpS proteins. It is surprising that the Clp core composition appears identical in all three plastid types, despite the remarkable differences in plastid proteome composition. This suggests that regulation of plastid proteolysis by the Clp machinery is not through differential regulation of ClpP/R/S gene expression, but rather through substrate recognition mechanisms and regulated interaction of chaperone-like molecules (ClpS1,2 and others) to the ClpP/R core.  相似文献   

8.
The ATP-dependent caseinolytic protease (Clp) is an essential housekeeping enzyme in plant chloroplasts. It is by far the most complex of all known Clp proteases, with a proteolytic core consisting of multiple catalytic ClpP and noncatalytic ClpR subunits. It also includes a unique form of Clp protein of unknown function designated ClpT, two of which exist in the model species Arabidopsis thaliana. Inactivation of ClpT1 or ClpT2 significantly reduces the amount of Clp proteolytic core, whereas loss of both proves seedling lethal under autotrophic conditions. During assembly of the Clp proteolytic core, ClpT1 first binds to the P-ring (consisting of ClpP3-6 subunits) followed by ClpT2, and only then does the P-ring combine with the R-ring (ClpP1, ClpR1-4 subunits). Most of the ClpT proteins in chloroplasts exist in vivo as homodimers, which then apparently monomerize prior to association with the P-ring. Despite their relative abundance, however, the availability of both ClpT proteins is rate limiting for the core assembly, with the addition of recombinant ClpT1 and ClpT2 increasing core content up to fourfold. Overall, ClpT appears to regulate the assembly of the chloroplast Clp protease, revealing a new and sophisticated control mechanism on the activity of this vital protease in plants.  相似文献   

9.
The molecular chaperone ClpC/Hsp93 is essential for chloroplast function in vascular plants. ClpC has long been held to act both independently and as the regulatory partner for the ATP-dependent Clp protease, and yet this and many other important characteristics remain unclear. In this study, we reveal that of the two near-identical ClpC paralogs (ClpC1 and ClpC2) in Arabidopsis chloroplasts, along with the closely related ClpD, it is ClpC1 that is the most abundant throughout leaf maturation. An unexpectedly large proportion of both chloroplast ClpC proteins (30% of total ClpC content) associates to envelope membranes in addition to their stromal localization. The Clp proteolytic core is also bound to envelope membranes, the amount of which is sufficient to bind to all the similarly localized ClpC. The role of such an envelope membrane Clp protease remains unclear although it appears uninvolved in preprotein processing or Tic subunit protein turnover. Within the stroma, the amount of oligomeric ClpC protein is less than that of the Clp proteolytic core, suggesting most if not all stromal ClpC functions as part of the Clp protease; a proposal supported by the near abolition of Clp degradation activity in the clpC1 knock-out mutant. Overall, ClpC appears to function primarily within the Clp protease, as the principle stromal protease responsible for maintaining homeostasis, and also on the envelope membrane where it possibly confers a novel protein quality control mechanism for chloroplast preprotein import.  相似文献   

10.
Distinctive types of ATP-dependent Clp proteases in cyanobacteria   总被引:2,自引:0,他引:2  
Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis and are thought to be ancestors to plant chloroplasts. Like chloroplasts, cyanobacteria possess a diverse array of proteolytic enzymes, with one of the most prominent being the ATP-dependent Ser-type Clp protease. The model Clp protease in Escherichia coli consists of a single ClpP proteolytic core flanked on one or both ends by a HSP100 chaperone partner. In comparison, cyanobacteria have multiple ClpP paralogs plus a ClpP variant (ClpR), which lacks the catalytic triad typical of Ser-type proteases. In this study, we reveal that two distinct soluble Clp proteases exist in the unicellular cyanobacterium Synechococcus elongatus. Each protease consists of a unique proteolytic core comprised of two separate Clp subunits, one with ClpP1 and ClpP2, the other with ClpP3 and ClpR. Each core also associates with a particular HSP100 chaperone partner, ClpC in the case of the ClpP3/R core, and ClpX for the ClpP1/P2 core. The two adaptor proteins, ClpS1 and ClpS2 also interact with the ClpC chaperone protein, likely increasing the range of protein substrates targeted by the Clp protease in cyanobacteria. We also reveal the possible existence of a third Clp protease in Synechococcus, one which associates with the internal membrane network. Altogether, we show that presence of several distinctive Clp proteases in cyanobacteria, a feature which contrasts from that in most other organisms.  相似文献   

11.
Clp P represents a unique family of serine proteases   总被引:19,自引:0,他引:19  
The amino acid sequence of Clp P, the proteolytic subunit of the ATP-dependent Clp protease of Escherichia coli, closely resembles a protein encoded by chloroplast DNA, which is well conserved between chloroplasts of different plant species. The homology extends over almost the full length of the sequences of both proteins and consists of approximately 46% identical and approximately 70% similar amino acids. Antibodies against E. coli Clp P cross-reacted with proteins with Mr of 20,000-30,000 in bacteria, lower eukaryotes, plants, and animal cells. Since the regulatory subunit of Clp protease, Clp A, also has a homolog in plants, as well as in other bacteria and in lower eukaryotes, it is likely that ATP-dependent proteolysis in chloroplasts is catalyzed in part by a Clp-like protease and that both components of Clp-like proteases are widespread in living cells. We have identified Ser-111 as the active site serine in E. coli Clp P modified by diisopropyl fluorophosphate. Mutational alteration of Ser-111 or His-136 eliminates proteolytic activity of Clp P. Both residues are found in highly conserved regions of the protein. The sequences around the active site residues suggest that Clp P represents a unique class of serine protease. Amino-terminal processing of cloned Clp P mutated at either Ser-111 or His-136 occurs efficiently when wild-type clpP is present in the chromosome but is blocked in clpP- hosts. Processing of Clp P appears, therefore, to involve an intermolecular autocatalytic cleavage reaction. Since processing of Clp P occurs in clpA- cells, the autoprocessing activity of Clp P is independent of Clp A.  相似文献   

12.
The caseinolytic protease (Clp) protease system has been expanded in plant plastids compared with its prokaryotic progenitors. The plastid Clp core protease consists of five different proteolytic ClpP proteins and four different noncatalytic ClpR proteins, with each present in one or more copies and organized in two heptameric rings. We determined the exact subunit composition and stoichiometry for the intact core and each ring. The chloroplast ClpP/R protease was affinity purified from clpr4 and clpp3 Arabidopsis thaliana null mutants complemented with C-terminal StrepII-tagged versions of CLPR4 and CLPP3, respectively. The subunit stoichiometry was determined by mass spectrometry-based absolute quantification using stable isotope-labeled proteotypic peptides generated from a synthetic gene. One heptameric ring contained ClpP3,4,5,6 in a 1:2:3:1 ratio. The other ring contained ClpP1 and ClpR1,2,3,4 in a 3:1:1:1:1 ratio, resulting in only three catalytic sites. These ClpP1/R1-4 proteins are most closely related to the two subunits of the cyanobacterial P3/R complex and the identical P:R ratio suggests conserved adaptation. Furthermore, the plant-specific C-terminal extensions of the ClpP/R subunits were not proteolytically removed upon assembly, suggesting a regulatory role in Clp chaperone interaction. These results will now allow testing ClpP/R structure-function relationships using rationale design. The quantification workflow we have designed is applicable to other protein complexes.  相似文献   

13.
14.
Intra-plastid proteases play crucial and diverse roles in the development and maintenance of non-photosynthetic plastids and chloroplasts. Formation and maintenance of a functional thylakoid electron transport chain requires various protease activities, operating in parallel, as well as in series. This review first provides a short, referenced overview of all experimentally identified plastid proteases in Arabidopsis thaliana. We then focus on the Clp protease system which constitutes the most abundant and complex soluble protease system in the plastid, consisting of 15 nuclear-encoded members and one plastid-encoded member in Arabidopsis. Comparisons to the simpler Clp system in photosynthetic and non-photosynthetic bacteria will be made and the role of Clp proteases in the green algae Chlamydomonas reinhardtii will be briefly reviewed. Extensive molecular genetics has shown that the Clp system plays an essential role in Arabidopsis chloroplast development in the embryo as well as in leaves. Molecular characterization of the various Clp mutants has elucidated many of the consequences of loss of Clp activities. We summarize and discuss the structural and functional aspects of the Clp machinery, including progress on substrate identification and recognition. Finally, the Clp system will be evaluated in the context of the chloroplast protease network. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

15.
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. The main constitutive Clp protease in photosynthetic organisms has evolved into a functionally essential and structurally intricate enzyme. The model Clp protease from the cyanobacterium Synechococcus consists of the HSP100 molecular chaperone ClpC and a mixed proteolytic core comprised of two distinct subunits, ClpP3 and ClpR. We have purified the ClpP3/R complex, the first for a Clp proteolytic core comprised of heterologous subunits. The ClpP3/R complex has unique functional and structural features, consisting of twin heptameric rings each with an identical ClpP33ClpR4 configuration. As predicted by its lack of an obvious catalytic triad, the ClpR subunit is shown to be proteolytically inactive. Interestingly, extensive modification to ClpR to restore proteolytic activity to this subunit showed that its presence in the core complex is not rate-limiting for the overall proteolytic activity of the ClpCP3/R protease. Altogether, the ClpP3/R complex shows remarkable similarities to the 20 S core of the proteasome, revealing a far greater degree of convergent evolution than previously thought between the development of the Clp protease in photosynthetic organisms and that of the eukaryotic 26 S proteasome.Proteases perform numerous tasks vital for cellular homeostasis in all organisms. Much of the selective proteolysis within living cells is performed by multisubunit chaperone-protease complexes. These proteases all share a common two-component architecture and mode of action, with one of the best known examples being the proteasome in archaebacteria, certain eubacteria, and eukaryotes (1).The 20 S proteasome is a highly conserved cylindrical structure composed of two distinct types of subunits, α and β. These are organized in four stacked heptameric rings, with two central β-rings sandwiched between two outer α-rings. Although the α- and β-protein sequences are similar, it is only the latter that is proteolytic active, with a single Thr active site at the N terminus. The barrel-shaped complex is traversed by a central channel that widens up into three cavities. The catalytic sites are positioned in the central chamber formed by the β-rings, adjacent to which are two antechambers conjointly built up by β- and α-subunits. In general, substrate entry into the core complex is essentially blocked by the α-rings, and thus relies on the associating regulatory partner, PAN and 19 S complexes in archaea and eukaryotes, respectively (1). Typically, the archaeal core structure is assembled from only one type of α- and β-subunit, so that the central proteolytic chamber contains 14 catalytic active sites (2). In contrast, each ring of the eukaryotic 20 S complex has seven distinct α- and β-subunits. Moreover, only three of the seven β-subunits in each ring are proteolytically active (3). Having a strictly conserved architecture, the main difference between the 20 S proteasomes is one of complexity. In mammalian cells, the three constitutive active subunits can even be replaced with related subunits upon induction by γ-interferon to generate antigenic peptides presented by the class 1 major histocompatibility complex (4).Two chambered proteases architecturally similar to the proteasome also exist in eubacteria, HslV and ClpP. HslV is commonly thought to be the prokaryotic counterpart to the 20 S proteasome mainly because both are Thr proteases. A single type of HslV protein, however, forms a proteolytic chamber consisting of twin hexameric rather than heptameric rings (5). Also displaying structural similarities to the proteasome is the unrelated ClpP protease. The model Clp protease from Escherichia coli consists of a proteolytic ClpP core flanked on one or both sides by the ATP-dependent chaperones ClpA or ClpX (6). The ClpP proteolytic chamber is comprised of two opposing homo-heptameric rings with the catalytic sites harbored within (7). ClpP alone displays only limited peptidase activity toward short unstructured peptides (8). Larger native protein substrates need to be recognized by ClpA or ClpX and then translocated in an unfolded state into the ClpP proteolytic chamber (9, 10). Inside, the unfolded substrate is bound in an extended manner to the catalytic triads (Ser-97, His-122, and Asp-171) and degraded into small peptide fragments that can readily diffuse out (11). Several adaptor proteins broaden the array of substrates degraded by a Clp protease by binding to the associated HSP100 partner and modifying its protein substrate specificity (12, 13). One example is the adaptor ClpS that interacts with ClpA (EcClpA) and targets N-end rule substrates for degradation by the ClpAP protease (14).Like the proteasome, the Clp protease is found in a wide variety of organisms. Besides in all eubacteria, the Clp protease also exist in mammalian and plant mitochondria, as well as in various plastids of algae and plants. It also occurs in the unusual plastid in Apicomplexan protozoan (15), a family of parasites responsible for many important medical and veterinary diseases such as malaria. Of all these organisms, photobionts have by far the most diverse array of Clp proteins. This was first apparent in cyanobacteria, with the model species Synechococcus elongatus having 10 distinct Clp proteins, four HSP100 chaperones (ClpB1–2, ClpC, and ClpX), three ClpP proteins (ClpP1–3), a ClpP-like protein termed ClpR, and two adaptor proteins (ClpS1–2) (16). Of particular interest is the ClpR variant, which has protein sequence similarity to ClpP but appears to lack the catalytic triad of Ser-type proteases (17). This diversity of Clp proteins is even more extreme in photosynthetic eukaryotes, with at least 23 different Clp proteins in the higher plant Arabidopsis thaliana, most of which are plastid-localized (18).We have recently shown that two distinct Clp proteases exist in Synechococcus, both of which contain mixed proteolytic cores. The first consists of ClpP1 and ClpP2 subunits, and associates with ClpX, whereas the other has a proteolytic core consisting of ClpP3 and ClpR that binds to ClpC, as do the two ClpS adaptors (19). Of these proteases, it is the more constitutively abundant ClpCP3/R that is essential for cell viability and growth (20, 21). It is also the ClpP3/R complex that is homologous to the single type in eukaryotic plastids, all of which also have ClpC as the chaperone partner (16). In algae and plants, however, the complexity of the plastidic Clp proteolytic core has evolved dramatically. In Arabidopsis, the core complex consists of five ClpP and four ClpR paralogs, along with two unrelated Clp proteins unique to higher plants (22). Like ClpP3/R, the plastid Clp protease in Arabidopsis is essential for normal growth and development, and appears to function primarily as a housekeeping protease (23, 24).One of the most striking developments in the Clp protease in photosynthetic organisms and Apicomplexan parasites is the inclusion of ClpR within the central proteolytic core. Although this type of Clp protease has evolved into a vital enzyme, little is known about its activity or the exact role of ClpR within the core complex. To address these points we have purified the intact Synechococcus ClpP3/R proteolytic core by co-expression in E. coli. The recombinant ClpP3/R forms a double heptameric ring complex, with each ring having a specific ClpP3/R stoichiometry and arrangement. Together with ClpC, the ClpP3/R complex degrades several polypeptide substrates, but at a rate considerably slower than that by the E. coli ClpAP protease. Interestingly, although ClpR is shown to be proteolytically inactive, its inclusion in the core complex is not rate-limiting to the overall activity of the ClpCP3/R protease. In general, the results reveal remarkable similarities between the evolutionary development of the Clp protease in photosynthetic organisms and the eukaryotic proteasome relative to their simpler prokaryotic counterparts.  相似文献   

16.
Clp protease is a high relative molecular mass, ATP-dependent protease found in the cytoplasm of Escherichia coli. Clp protease is composed of two protein components, Clp A, which has ATPase activity, and Clp P, which has the proteolytic active site and is activated by Clp A in the presence of ATP. Clp P subunits (Mr = 21,500) are arranged in two hexagonal rings directly superimposed on each other, and under low salt conditions two dodecamers associate to form a particle with Mr approximately 440,000. Clp A (subunit Mr = 83,000) and Clp P do not associate in the absence of nucleotide, but Clp A with ATP bound associates with Clp P to form an active proteolytic complex with Mr approximately 700,000. Although adenosine 5'-[beta gamma-imido]triphosphate (AMPPNP) weakly promotes association between Clp A and Clp P, non-hydrolysable analogues of ATP do not activate proteolysis, indicating that association between the components is not sufficient to allow proteolysis. Association between Clp A and Clp P does not alter the basal ATPase activity of Clp A, but addition of protein substrates is accompanied by an increase in ATP hydrolysis by Clp A. Chemically-inactivated Clp P or inactive mutants of Clp P also associate with Clp A, but no increase in the ATPase activity of Clp A is observed, either in the presence or absence of protein substrates, when Clp P is inactive. Thus the increased ATP hydrolysis is dependent on active proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Identification of clp genes expressed in senescing Arabidopsis leaves.   总被引:4,自引:0,他引:4  
Clp protease is a highly selective protease in E. coli, which consists of two types of subunits, the regulatory subunit with ATPase activity, ClpA, and the catalytic subunit, ClpP. In order to examine the possible association of plant Clp protease with the degradation of protein in senescing chloroplasts, we isolated a cDNA clone for ClpC which is a plant homologue of ClpA from Arabidopsis thaliana in addition to ERD1 which we had isolated earlier [Kiyosue et al. (1993) Biochem. Biophys. Res. Commun. 196: 1214]. We also isolated a clone for the plastidic gene, clpP (pclpP) and cDNA clones for putative nuclear clpP genes (nclpP1-6). We analyzed the expression of these clp genes in Arabidopsis leaves after various dark periods and during natural senescence. The expression of erd1 was increased by dark-induced and by natural senescence, as reported earlier [Nakashima et al. (1997) Plant J. 12: 851], while that of AtclpC was decreased. Two catalytic subunits nclpPs (nclpP3 and nclpP5) showed high expression in naturally senescing leaves, but the expression of pclpP and the other nclpPs was not changed. Immunoblot analysis of chloroplast protein and in vitro import analysis demonstrated that both nucleus-encoded regulatory subunits as well as nClpP5 were localized in the chloroplast stroma. These observations suggest that chloroplast Clp protease is composed of very complicated combinations of subunits, and that ERD1, nClpP5 and pClpP have a role in the concerted degradation of protein in senescing chloroplasts.  相似文献   

18.
19.
The Clp/Hsp100 ATPases are hexameric protein machines that catalyze the unfolding, disassembly and disaggregation of specific protein substrates in bacteria, plants and animals. Many family members also interact with peptidases to form ATP-dependent proteases. In Escherichia coli, for instance, the ClpXP protease is assembled from the ClpX ATPase and the ClpP peptidase. Here, we have used multiple sequence alignments to identify a tripeptide 'IGF' in E. coli ClpX that is essential for ClpP recognition. Mutations in this IGF sequence, which appears to be part of a surface loop, disrupt ClpXP complex formation and prevent protease function but have no effect on other ClpX activities. Homologous tripeptides are found only in a subset of Clp/Hsp100 ATPases and are a good predictor of family members that have a ClpP partner. Mapping of the IGF loop onto a homolog of known structure suggests a model for ClpX-ClpP docking.  相似文献   

20.
Clp proteases and chaperones are ubiquitous among prokaryotes and eukaryotes, and in many pathogenic bacteria the Clp stress response system is also involved in regulation of virulence properties. In this study, the roles of ClpB, ClpC, and ClpXP in stress resistance, homotypic and heterotypic biofilm formation, and intracellular invasion in the oral opportunistic pathogen Porphyromonas gingivalis were investigated. Absence of ClpC and ClpXP, but not ClpB, resulted in diminished tolerance to high temperatures. Response to oxidative stress was not affected by the loss of any of the Clp proteins. The clpC and clpXP mutants demonstrated elevated monospecies biofilm formation, and the absence of ClpXP also enhanced heterotypic P. gingivalis-Streptococcus gordonii biofilm formation. All clp mutants adhered to gingival epithelial cells to the same level as the wild type; however, ClpC and ClpXP were found to be necessary for entry into host epithelial cells. ClpB did not play a role in entry but was required for intracellular replication and survival. ClpXP negatively regulated the surface exposure of the minor fimbrial (Mfa) protein subunit of P. gingivalis, which stimulates biofilm formation but interferes with epithelial cell entry. Collectively, these results show that the Clp protease complex and chaperones control several processes that are important for the colonization and survival of P. gingivalis in the oral cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号