首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reported previously that the carbohydrate domain of the amyloid precursor protein is involved in amyloid precursor protein (APP)-APP interactions. Functional in vitro studies suggested that this interaction occurs through the collagen binding site of APP. The physiological significance remained unknown, because it is not understood whether and how APP dimerization occurs in vivo. Here we report that cellular APP exists as homodimers matching best with a two-site model. Consistent with our published crystallographic data, we show that a deletion of the entire sequence after the kunitz protease inhibitor domain did not abolish APP homodimerization, suggesting that two domains are critically involved but that neither is essential for homodimerization. Finally, we generated stabilized dimers by expressing mutant APP with a single cysteine in the ectodomain juxtamembrane region. Mutation of Lys(624) to cysteine produced approximately 6-8-fold more A beta than cells expressing normal APP. Our results suggest that amyloid A beta production can in principle be positively regulated by dimerization in vivo. We suggest that dimerization could be a physiologically important mechanism for regulating the proposed signal activity of APP.  相似文献   

2.
Mitochondrial dysfunction is a prominent feature of Alzheimer’s disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD+/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD.  相似文献   

3.
Upon activation, platelets secrete a 120-kDa protein that competes for the binding and internalization of acetyl low density lipoproteins (AcLDL) by macrophages. From the amino-terminal amino acid sequence, amino acid composition, and immunoblot analysis, we identified the active factor in platelet secretion products as sAPP, an alpha-secretase cleavage product of the beta-amyloid precursor protein (APP), that contains a Kunitz-type protease inhibitor (KPI) domain. We showed that both sAPP751 (also called Nexin II) and sAPP695, which does not contain a KPI domain, are ligands for the class A scavenger receptor (SR-A). Chinese hamster ovary cells stably transfected to express the SR-A bound and internalized 4-fold more human platelet-derived sAPP than control cells. The binding and internalization of sAPP were inhibited by the SR-A antagonist fucoidin. In addition, sAPP competed as effectively as fucoidin for SR-A-mediated cell association and degradation of (125)I-AcLDL. To determine if the KPI domain is required for the binding of sAPP to the SR-A, APP751 and APP695 were expressed in Chinese hamster ovary cells, and sAPP751 and sAPP695 purified from the medium were tested for their binding to the SR-A. sAPP751 and sAPP695 were equally effective in competing for the cell association of (125)I-AcLDL by SR-A-expressing cells, demonstrating that the KPI domain is not essential for binding. We also found that sAPP751 is present in extracts of atherosclerotic lesions and that sAPP competes for the SR-A-mediated cell association of oxidized low density lipoprotein. Deletion mutagenesis indicated that a negatively charged region of APP (residues 191-264) contributes to binding to the SR-A. These results suggest that the SR-A contributes to the clearance of sAPP and that sAPP competes for the cell association of other SR-A ligands.  相似文献   

4.
Abstract: The effect of the Kunitz proteinase inhibitor (KPI) on potential β-amyloid precursor protein (βPP)-processing activities from control and Alzheimer's disease (AD) brains was examined using fluorogenic substrates designed to mimic the secretory and amyloidogenic cleavages in βPP. In addition, the level of secretion of KPI-containing βPP751 and KPI-lacking βPP695 from transfected cells was examined to assess the effect of the KPI on βPP secretion. βPP751 and βPP695, obtained from conditioned media of transfected cells, had no effect on proteinase activities against the secretory and amyloidogenic substrates in extracts from control and AD brains. At similar concentrations βPP751, but not βPP695, completely inhibited the activity of trypsin against these substrates. Serine proteinase inhibitors had only modest effects on activities from brain, whereas cysteine modification completely inhibited them, indicating that these proteinase activities were not of the serine type. Thus, the results do not support a role for the KPI in the secretion of βPP or in the amyloidogenic cleavage of βPP. The amounts of βPP695 and βPP751 collected from the media of transfected cells after 48 h of growth were similar, indicating an equal rate of secretion. This result suggests that the KPI domain in βPP751 did not inhibit the secretory cleavage in transfected cells.  相似文献   

5.
6.
7.
The 39-43 residue polypeptide (amyloid beta protein, beta A4) deposited as amyloid in Alzheimer's disease (AD) is derived from a set of 695-770 residue precursors referred to as the amyloid beta A4 protein precursor (beta APP). In each of the 695, 751, and 770 residue precursors, the 43 residue beta A4 is an internal peptide that begins 99 residues from the COOH-terminus of the beta APP. Each holoform is normally cleaved within the beta A4 to produce a large secreted derivative as well as a small membrane associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire beta A4 peptide. In this study, we employ cells stably transfected with full length beta APP695, beta APP751, or beta APP770 expression constructs to show that phorbol ester activation of protein kinase C substantially increases the production of secreted forms from each isoform. By increasing processing of beta APP in the secretory pathway, PKC phosphorylation may help to prevent amyloid deposition.  相似文献   

8.
We found previously by fluorescence resonance energy transfer experiments that amyloid precursor protein (APP) homodimerizes in living cells. APP homodimerization is likely to be mediated by two sites of the ectodomain and a third site within the transmembrane sequence of APP. We have now investigated the role of the N-terminal growth factor-like domain in APP dimerization by NMR, biochemical, and cell biological approaches. Under nonreducing conditions, the N-terminal domain of APP formed SDS-labile and SDS-stable complexes. The presence of SDS was sufficient to convert native APP dimers entirely into monomers. Addition of an excess of a synthetic peptide (APP residues 91-116) containing the disulfide bridge-stabilized loop inhibited cross-linking of pre-existing SDS-labile APP ectodomain dimers. Surface plasmon resonance analysis revealed that this peptide specifically bound to the N-terminal domain of APP and that binding was entirely dependent on the oxidation of the thiol groups. By solution-state NMR we detected small chemical shift changes indicating that the loop peptide interacted with a large protein surface rather than binding to a defined pocket. Finally, we studied the effect of the loop peptide added to the medium of living cells. Whereas the levels of alpha-secretory APP increased, soluble beta-cleaved APP levels decreased. Because Abeta40 and Abeta42 decreased to similar levels as soluble beta-cleaved APP, we conclude either that beta-secretase binding to APP was impaired or that the peptide allosterically affected APP processing. We suggest that APP acquires a loop-mediated homodimeric state that is further stabilized by interactions of hydrophobic residues of neighboring domains.  相似文献   

9.
10.
The beta-amyloid peptide (A beta), the major component of the senile plaques found in the brains of Alzheimer's disease patients, is derived from proteolytic processing of a transmembrane glycoprotein known as the amyloid precursor protein (APP). Human APP exists in various isoforms, of which the major ones contain 695, 751, and 770 amino acids. Proteolytic cleavage of APP by alpha- or beta-secretases releases the extracellular soluble fragments sAPP alpha or sAPP beta, respectively. Despite the fact that sAPP alpha plays important roles in both physiological and pathological processes in the brain, very little is known about its structure and stability. We have recently presented a structural model of sAPP alpha 695 obtained from small-angle x-ray scattering measurements (Gralle, M., Botelho, M. M., Oliveira, C. L. P., Torriani, I., and Ferreira, S. T. (2002) Biophys. J. 83, 3513-3524). We now report studies on the folding and stabilities of sAPP alpha 695 and sAPP alpha 770. The combined use of intrinsic fluorescence, 4-4'-Dianilino-1,1'binaphthyl-5,5'-disulfonic acid (bis-ANS) fluorescence, circular dichroism, differential ultraviolet absorption, and small-angle x-ray scattering measurements of the equilibrium unfolding of sAPP alpha 695 and sAPP alpha 770 by GdnHCl and urea revealed multistep folding pathways for both sAPP alpha isoforms. Such stepwise folding processes may be related to the identification of distinct structural domains in the three-dimensional model of sAPP alpha. Furthermore, the relatively low stability of the native state of sAPP alpha suggests that conformational plasticity may play a role in allowing APP to interact with a number of distinct physiological ligands.  相似文献   

11.
The amyloid beta-protein precursor (APP) of Alzheimer's disease (AD) is cleaved either by alpha-secretase to generate an N-terminally secreted fragment, or by beta- and gamma-secretases to generate the beta-amyloid protein (Abeta). The accumulation of Abeta in the brain is an important step in the pathogenesis of AD. Alternative mRNA splicing can generate isoforms of APP which contain a Kunitz protease inhibitor (KPI) domain. However, little is known about the physiological function of this domain. In the present study, the metabolic turnover of APP was examined in cultured chick sympathetic neurons. APP was labelled by incubating neurons for 5 h with [35S]methionine and [35S]cysteine. Intracellular labelled APP decayed in a biphasic pattern suggesting that trafficking occurs through two metabolic compartments. The half-lives for APP in each compartment were 1.5 and 5.7 h, respectively. A small fraction (10%) of the total APP was secreted into the culture medium where it was degraded with a half-life of 9 h. Studies using specific protease inhibitors demonstrated that this extracellular breakdown was due to cleavage by a trypsin-like serine protease that was secreted into the culture medium. Significantly, this protease was inhibited by a recombinant isoform of APP (sAPP751), which contains a region homologous to the Kunitz protease inhibitor (KPI) domain. These results suggest that KPI forms of APP regulate extracellular cleavage of secreted APP by inhibiting the activity of a secreted APP-degrading protease.  相似文献   

12.
We reported previously that the N-terminal D1 catalytic domain of receptor protein-tyrosine phosphatase alpha (RPTPalpha) forms a symmetrical, inhibited dimer in a crystal structure, in which a helix-turn-helix wedge element from one monomer is inserted into the catalytic cleft of the other monomer. Previous functional studies also suggested that dimerization inhibits the biological activity of a CD45 chimeric RPTP and the catalytic activity of an isolated RPTPsigma D1 catalytic domain. Most recently, we have also shown that enforced dimerization inhibits the biological activity of full-length RPTPalpha in a wedge-dependent manner. The physiological significance of such inhibition is unknown, due to a lack of understanding of how RPTPalpha dimerization is regulated in vivo. In this study, we show that transiently expressed cell surface RPTPalpha exists predominantly as homodimers, suggesting that dimerization-mediated inhibition of RPTPalpha biological activity is likely to be physiologically relevant. Consistent with our published and unpublished crystallographic data, we show that mutations in the wedge region of D1 catalytic domain and deletion of the entire D2 catalytic domain independently reduced but did not abolish RPTPalpha homodimerization, suggesting that both domains are critically involved but that neither is essential for homodimerization. Finally, we also provide evidence that both the RPTPalpha extracellular domain and the transmembrane domain were independently able to homodimerize. These results lead us to propose a zipper model in which inactive RPTPalpha dimers are stabilized by multiple, relatively weak dimerization interfaces. Dimerization in this manner would provide a potential mechanism for negative regulation of RPTPalpha. Such RPTPalpha dimers could be activated by extracellular ligands or intracellular binding proteins that induce monomerization or by intracellular signaling events that induce an open conformation of the dimer.  相似文献   

13.
The regulation of epidermal growth involves a number of ions, growth factors and cytokines and possibly additional but as yet unknown factors. Here we report on the potential role of the secretory N-terminal domain (sAPP) of the Alzheimer amyloid precursor protein (APP) in the regulation of keratinocyte proliferation. In human skin APP was detectable predominantly in the basal cell layer of the epidermis whereas the immunocytochemical signal in the underlying mesenchymal tissue was very low. Cultured normal human keratinocytes expressed the three APP isoforms 695, 751 and 770 with highest values for the isoforms 751 and 770. HaCaT cells, a spontaneously immortalized human keratinocyte cell line, exhibited almost identical patterns in the expression of the APP isoforms and in the release of endogenous sAPP. In HaCaT cells, recombinant sAPP (sAPPrec) was found to compete with endogenous sAPP for the same binding sites. Binding of sAPPrec was specific and occurred in microdomains of approximately 0.1 to approximately 0.3 microm in diameter. At 10 nM, sAPPrec binding induced a 2- to 4-fold increase in the rate of cell growth. sAPP concentrations in the conditioned media were found to reach 5-20 nM which is in the mitogenic range of sAPPrec. The proliferative effect of sAPP was inhibited by approximately 50% when antisense oligonucleotides directed against the APP mRNA were applied. The predominant expression of  相似文献   

14.
The monomeric model of rhodopsin-like G protein-coupled receptors (GPCRs) has progressively yielded the floor to the concept of GPCRs being oligo(di)mers, but the functional correlates of dimerization remain unclear. In this report, dimers of glycoprotein hormone receptors were demonstrated in living cells, with a combination of biophysical (bioluminescence resonance energy transfer and homogenous time resolved fluorescence/fluorescence resonance energy transfer), functional and biochemical approaches. Thyrotropin (TSHr) and lutropin (LH/CGr) receptors form homo- and heterodimers, via interactions involving primarily their heptahelical domains. The large hormone-binding ectodomains were dispensable for dimerization but modulated protomer interaction. Dimerization was not affected by agonist binding. Observed functional complementation indicates that TSHr dimers may function as a single functional unit. Finally, heterologous binding-competition studies, performed with heterodimers between TSHr and LH/CG-TSHr chimeras, demonstrated the unsuspected existence of strong negative cooperativity of hormone binding. Tracer desorption experiments indicated an allosteric behavior in TSHr and, to a lesser extent, in LH/CGr and FSHr homodimers. This study is the first report of homodimerization associated with negative cooperativity in rhodopsin-like GPCRs. As such, it may warrant revisitation of allosterism in the whole GPCR family.  相似文献   

15.
Nef, a human immunodeficiency virus type 1 (HIV-1) accessory factor capable of interaction with a diverse array of host cell signaling molecules, is essential for high-titer HIV replication and AIDS progression. Previous biochemical and structural studies have suggested that Nef may form homodimers and higher-order oligomers in HIV-infected cells, which may be required for both immune and viral receptor downregulation as well as viral replication. Using bimolecular fluorescence complementation, we provide the first direct evidence for Nef dimers within HIV host cells and identify the structural requirements for dimerization in vivo. Bimolecular fluorescence complementation analysis shows that the multiple hydrophobic and electrostatic interactions found within the dimerization interface of the Nef X-ray crystal structure are essential for dimerization in cells. Nef dimers localized to the plasma membrane as well as the trans-Golgi network, two subcellular localizations essential for Nef function. Mutations in the Nef dimerization interface dramatically reduced both Nef-induced CD4 downregulation and HIV replication. Viruses expressing dimerization-defective Nef mutants were disabled to the same extent as HIV that fails to express Nef in terms of replication. These results identify the Nef dimerization region as a potential molecular target for antiretroviral drug discovery.  相似文献   

16.
The secreted form of Alzheimer amyloid beta/A4 protein precursor (APP) has been shown to be involved in cell growth regulation (Saitoh, T., Sundsmo, M., Roch, J.-M., Kimura, N., Cole, G., Schubert, D., Oltersdorf, T., and Schenk, D.B. (1989) Cell 58, 615-622). Using a strong prokaryotic expression system, we expressed, in Escherichia coli, peptide fragments covering different regions of the secreted form of APP-695. The longest of these fragments (KB75, 572 amino acids from Val-20 to Ile-591), which contained neither the Kunitz-type protease inhibitor (KPI) domain nor the amyloid beta/A4-protein domain, was purified and shown to be biologically active in terms of growth regulation. Two other APP fragments (KB48, 316 amino acids from Val-20 to Met-335; and RB17, 150 amino acids from Thr-296 to Pro-445), overlapping by only 40 amino acids at a close site C-terminal to the KPI insertion site, were also active. Furthermore, a chemically synthesized 40-residue peptide corresponding to this region of overlap also stimulated the growth of A-1 fibroblasts. These results establish the presence of growth-promoting activity in the secreted form of APP-695 and suggest that the site of this activity of APP-695 lies within a 40-amino acid domain next to the KPI insertion site.  相似文献   

17.
Abstract: We have shown previously that the amyloid precursor protein (APP) is synthesized in retinal ganglion cells and is rapidly transported down the axons, and that different molecular weight forms of the precursor have different developmental time courses. Some APP isoforms contain a Kunitz protease inhibitor (KPI) domain, and APP that lacks the KPI domain is considered the predominant isoform in neurons. We now show that, among the various rapidly transported APPs, a 140-kDa isoform contains the KPI domain. This APP isoform is highly expressed in rapidly growing retinal axons, and it is also prominent in adult axon endings. This 140-kDa KPI-containing APP is highly sulfated compared with other axonally transported isoforms. These results show that APP with the KPI domain is a prominent isoform synthesized in neurons in vivo, and they suggest that the regulation of protease activity may be an important factor during the establishment of neuronal connections.  相似文献   

18.
Abstract: The β-amyloid precursor protein (βAPP) is the source of the amyloid β-peptide that accumulates in the brain in Alzheimer's disease. A major processing pathway for βAPP involves an enzymatic cleavage within the amyloid β-peptide sequence that liberates secreted forms of βAPP (APPSs) into the extracellular milieu. We now report that postischemic administration of these APPSs intracerebroventricularly protects neurons in the CA1 region of rat hippocampus against ischemic injury. Treatment with APPS695 or APPS751 resulted in increased neuronal survival, and the surviving cells were functional as demonstrated by their ability to synthesize protein. These data provide direct evidence for a neuroprotective action of APPSs in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号