首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The gene cluster adjacent to the sequence of rpoN (encoding sigma factor sigma54) of Pseudomonas putida has been studied with respect to the C source regulation of the Pu promoter of the upper TOL (toluene catabolism) operon. The region includes four open reading frames (ORFs), two of which (named ptsN and ptsO genes) encode proteins similar to components of the phosphoenolpyruvate:sugar phosphotransferase system. Each of the four genes was disrupted with a nonpolar insertion, and the effects in the inhibition caused by glucose on Pu activity were inspected with a lacZ reporter system. Although cells lacking ORF102, ORF284, and ptsO did not display any evident phenotype under the conditions tested, the loss of ptsN, which encodes the IIANtr protein, made Pu unresponsive to repression by glucose. The ptsN mutant had rates of glucose/gluconate consumption identical to those of the wild type, thus ruling out indirect effects mediated by the transport of the carbohydrate. A site-directed ptsN mutant in which the conserved phospho-acceptor site His68 of IIANtr was replaced by an aspartic acid residue made Pu blind to the presence or absence of glucose, thus supporting the notion that phosphorylation of IIANtr mediates the C source inhibition of the promoter. These data substantiate the existence of a molecular pathway for co-regulation of some sigma54 promoters in which IIANtr is a key protein intermediate.  相似文献   

3.
The glucose and fructose degradation pathways were analyzed in the halophilic archaeon Halococcus saccharolyticus by 13C-NMR labeling studies in growing cultures, comparative enzyme measurements and cell suspension experiments. H. saccharolyticus grown on complex media containing glucose or fructose specifically 13C-labeled at C1 and C3, formed acetate and small amounts of lactate. The 13C-labeling patterns, analyzed by 1H- and 13C-NMR, indicated that glucose was degraded via an Entner-Doudoroff (ED) type pathway (100%), whereas fructose was degraded almost completely via an Embden-Meyerhof (EM) type pathway (96%) and only to a small extent (4%) via an ED pathway. Glucose-grown and fructose-grown cells contained all the enzyme activities of the modified versions of the ED and EM pathways recently proposed for halophilic archaea. Glucose-grown cells showed increased activities of the ED enzymes gluconate dehydratase and 2-keto-3-deoxy-gluconate kinase, whereas fructose-grown cells contained higher activities of the key enzymes of a modified EM pathway, ketohexokinase and fructose-1-phosphate kinase. During growth of H. saccharolyticus on media containing both glucose and fructose, diauxic growth kinetics were observed. After complete consumption of glucose, fructose was degraded after a lag phase, in which fructose-1-phosphate kinase activity increased. Suspensions of glucose-grown cells consumed initially only glucose rather than fructose, those of fructose-grown cells degraded fructose rather than glucose. Upon longer incubation times, glucose- and fructose-grown cells also metabolized the alternate hexoses. The data indicate that, in the archaeon H. saccharolyticus, the isomeric hexoses glucose and fructose are degraded via inducible, functionally separated glycolytic pathways: glucose via a modified ED pathway, and fructose via a modified EM pathway.Abbreviations. KDG 2-Keto-3-deoxygluconate - KDPG 2-Keto-3-deoxy-6-phosphogluconate - FBP Fructose-1,6-bisphosphate - TIM Triosephosphate isomerase - GAP Glyceraldehyde-3-phosphate - PEP Phosphoenolpyruvate - PTS Phosphotransferase - 1-PFK Fructose 1-phosphate kinase An erratum to this article can be found at  相似文献   

4.
A Kraus  C Hueck  D Grtner    W Hillen 《Journal of bacteriology》1994,176(6):1738-1745
Catabolite repression (CR) of xylose utilization by Bacillus subtilis involves a 14-bp cis-acting element (CRE) located in the translated region of the gene encoding xylose isomerase (xylA). Mutations of CRE making it more similar to a previously proposed consensus element lead to increased CR exerted by glucose, fructose, and glycerol. Fusion of CRE to an unrelated, constitutive promoter confers CR to beta-galactosidase expression directed by that promoter. This result demonstrates that CRE can function independently of sequence context and suggests that it is indeed a generally active cis element for CR. In contrast to the other carbon sources studied here, glucose leads to an additional repression of xylA expression, which is independent of CRE and is not found when CRE is fused to the unrelated promoter. This repression requires a functional xylR encoding Xyl repressor and is dependent on the concentrations of glucose and the inducer xylose in the culture broth. Potential mechanisms for this glucose-specific repression are discussed.  相似文献   

5.
The activity of the toluene-responsive sigma(54) Pu promoter of the pWW0 TOL plasmid of Pseudomonas putida is down-regulated in vivo during exponential growth in rich medium and also by the presence of glucose in the culture. Although the Pu promoter already performs poorly during log growth in minimal medium when amended with casamino acids, the addition of glucose further decreased by two- to threefold the accumulation of beta-galactosidase in a Pu-lacZ reporter P. putida strain. Since Pu was still down-regulated during exponential growth regardless of glucose addition, it appeared that the carbohydrate separately influenced promoter activity. This notion was supported by the growth-dependent induction pattern of Pu in a ptsN mutant of P. putida, the loss of which makes Pu no longer responsive to repression by glucose. On the other hand, overexpression of the sigma factor sigma(54), known to partially alleviate the exponential silencing of the promoter, did not affect glucose inhibition of Pu. These data indicated that exponential silencing and carbon source-dependent repression are two overlapping but genetically distinguishable mechanisms that adapt Pu to the physiological status of the cells and nutrient availability.  相似文献   

6.
A number of mutants in which glucolysis is impaired have been isolated from Pseudomonas putida. The study of their behavior shows that this organism possesses a single glucolytic pathway with physiological significance. The first step of the pathway consists in the oxidation of glucose into gluconate. Two proteins with glucose dehydrogenase activity appear to exist in P. putida but the reasons for this duplicity are not clear. The process continues with the formation of 2-ketogluconate which is in turn converted into gluconate-6-phosphate. This is proved by the fact that mutants unable to form gluconate-6-phosphate from 2-ketogluconate show extremely slow growth on glucose or gluconate (generation times are increased more than 100 times). Other possible routes for the conversion of glucose into gluconate-6-phosphate, the glucose-6-phosphate pathway, or the direct phosphorylation of the gluconate formed by glucose oxidation are only minor shunts in P. putida. The Entner-Doudoroff enzymes, which catalyze the conversion of gluconate-6-phosphate into pyruvate and triosephosphate, appear to be essential to grow on glucose and also on gluconate and 2-ketogluconate. A significative role of the pentose route in the catabolism of these substrates is not apparent from this study. In contrast, P. putida strains showing no activity of the Entner-Doudoroff enzymes grow readily on fructose, although there is evidence that this hexose is at least partially catabolized via gluconate-6-phosphate.  相似文献   

7.
8.
Pseudomonas putida CSV86 utilizes glucose, naphthalene, methylnaphthalene, benzyl alcohol and benzoate as the sole source of carbon and energy. Compared with glucose, cells grew faster on aromatic compounds as well as on organic acids. The organism failed to grow on gluconate, 2-ketogluconate, fructose and mannitol. Whole-cell oxygen uptake, enzyme activity and metabolic studies suggest that in strain CSV86 glucose utilization is exclusively by the intracellular phosphorylative pathway, while in Stenotrophomonas maltophilia CSV89 and P. putida KT2442 glucose is metabolized by both direct oxidative and indirect phosphorylative pathways. Cells grown on glucose showed five- to sixfold higher activity of glucose-6-phosphate dehydrogenase compared with cells grown on aromatic compounds or organic acids as the carbon source. Study of [14C]glucose uptake by whole cells indicates that the glucose is taken up by active transport. Metabolic and transport studies clearly demonstrate that glucose metabolism is suppressed when strain CSV86 is grown on aromatic compounds or organic acids.  相似文献   

9.
In contrast to Escherichia coli, glucose metabolism in pseudomonads occurs exclusively through the Entner‐Doudoroff (ED) pathway. This pathway, as well as the three routes to generate the initial ED pathway substrate, 6‐phosphogluconate, is regulated by the PtxS, HexR and GtrS/GltR systems. With GntR (PA2320) we report here the identification of an additional regulator in Pseudomonas aeruginosa PAO1. GntR repressed its own expression as well as that of the GntP gluconate permease. In contrast to PtxS and GtrS/GltR, GntR did not modulate expression of the toxA gene encoding the exotoxin A virulence factor. GntR was found to bind to promoters PgntR and PgntP and the consensus sequence of its operator was defined as 5′‐AC‐N‐AAG‐N‐TAGCGCT‐3′. Both operator sites overlapped with the RNA polymerase binding site and we show that GntR employs an effector mediated de‐repression mechanism. The release of promoter bound GntR is induced by gluconate and 6‐phosphogluconate that bind with similar apparent affinities to the GntR/DNA complex. GntR and PtxS are paralogous and may have evolved from a common ancestor. The concerted action of four regulatory systems in the regulation of glucose metabolism in Pseudomonas can be considered as a model to understand complex regulatory circuits in bacteria.  相似文献   

10.
11.
Fructose, galactose, L-arabinose, gluconate, and several organic acids support rapid growth and N2 fixation of Azospirillum brasiliense ATCC 29145 (strain Sp7) as a sole source of carbon and energy. Growth of Azospirillum lipoferum ATCC 29707 (strain Sp59b) is also supported by glucose, mannose, mannitol, and alpha-ketoglutarate. Oxidation of fructose and gluconate by A. brasiliense Sp7 and of glucose, gluconate, and fructose by A. lipoferum Sp59b was achieved through inducible enzymatic mechanisms. Both strains exhibited all of the enzymes of the Embden-Meyerhof-Parnas pathway, and strain Sp59b also possesses all the enzymes of the Entner-Doudoroff pathway. Fluoride inhibited growth on fructose (strains Sp7 and Sp59b) or on glucose (strain Sp59b) but not on malate. There was no activity via the oxidative hexose monophosphate pathway in either strain. There was greater activity with 1-phosphofructokinase than with 6-phosphofructokinase in both strains. Strain Sp59b formed fructose-6-phosphate via hexokinase, an enzyme that is lacking in strain Sp7. A. brasiliense and A. lipoferum exhibited the enzymes both of the tricarboxylic acid cycle and of the glyoxylate shunt; iodoacetate, fluoropyruvate, and malonate were inhibitory. A. brasiliense Sp7 could not transport [14C]glucose and alpha-[14C]ketoglutarate into its cells.  相似文献   

12.
13.
In addition to the ability of Penicillium notatum to grow on sucrose, glucose, fructose and gluconate, substantial growth occurred on 2-ketogluconate and 5-ketogluconate thereby indicating a diverse sugar metabolism. Cell-free extracts contained all the enzymes of the Embden-Meyerhof-Parnas pathway and for both oxidative and non-oxidative pentose phosphate metabolism. Despite inconsistencies in results between different assay methods for the conventional Entner-Doudoroff (ED) enzymes, the data indicated the route was enzymatically possible. Demonstrations of the activities of the enzymes of the non-phosphorylative equivalent of the ED pathway were achieved. No evidence was found of a phosphorylative linking enzyme between the two pathways. Both 2- and 5-ketogluconate reductases were detected along with gluconate dehydrogenase which suggested interconvertibility between the ketogluconates and gluconate. However, ketogluconokinase, responsible for the conversion of ketogluconate to 2-keto-6-phosphogluconate, was not detected. A scheme for the inter-relationships of routes of gluconate metabolism is discussed.  相似文献   

14.
Phenylacetic acid (PAA) is produced by many bacteria as an antifungal agent and also appears to be an environmentally toxic chemical. The object of this study was to detect PAA using Pseudomonas putida harboring a reporter plasmid that has a PAA-inducible promoter fused to a green fluorescent protein (GFP) gene. Pseudomonas putida KT2440 was used to construct a green fluorescent protein-based reporter fusion using the paaA promoter region to detect the presence of PAA. The reporter strain exhibited a high level of gfp expression in minimal medium containing PAA; however, the level of GFP expression diminished when glucose was added to the medium, whereas other carbon sources, such as succinate and pyruvate, showed no catabolic repression. Interestingly, overexpression of a paaF gene encoding PAACoA ligase minimized catabolic repression. The reporter strain could also successfully detect PAA produced by other PAA-producing bacteria. This GFP-based bioreporter provides a useful tool for detecting bacteria producing PAA.  相似文献   

15.
TrmB of Pyrococcus furiosus was discovered as the trehalose/maltose-specific repressor for the genes encoding the trehalose/maltose high-affinity ABC transporter (the TM system). TrmB also represses the genes encoding the high affinity maltodextrin-specific ABC transporter (the MD system) with maltodextrin and sucrose as inducers. In addition, TrmB binds glucose leading to an increased repression of both, the TM and the MD system. Thus, TrmB recognizes different promoters and depending on the promoter it will be activated or inactivated for promoter binding by different sugar effectors. The TrmB-like protein TrmBL1 of P. furiosus is a global regulator and recognizes preferentially, but not exclusively, the TGM (for Thermococcales-glycolytic motif) sequence that is found upstream of the MD system as well as of genes encoding enzymes involved in the glycolytic and the gluconeogenic pathway. It responds to maltose and maltotriose as inducers and functions as repressor for the genes encoding the MD system and glycolytic enzymes, but as activator for genes encoding gluconeogenic enzymes. The TrmB-like protein TrmBL2 of P. furiosus lacks the sugar-binding domain that has been determined in TrmB. It recognizes the MD promoter, but not all TGM harboring promoters. It is evolutionary the most conserved among the Thermococcales. The regulatory range of TrmBL2 remains unclear.  相似文献   

16.
J. S. Flick  M. Johnston 《Genetics》1992,130(2):295-304
Repression of GAL1 expression during growth on glucose is mediated in part by cis-acting promoter elements designated URSG. We show that oligonucleotides containing sequences from two regions of URSG confer glucose repression upon a heterologous promoter. Repression caused by URSG is dependent on trans-acting factors of the glucose repression pathway and is independent of orientation or location within a promoter, suggesting that URSG contains binding sites for a glucose-activated repressor protein(s). Genetic analysis identified three apparently novel genes (URR1, URR3 and URR4) that are specifically required for URSG-mediated repression and may encode such repressor proteins. Mutations in the URR genes suppress the defect in URSG derepression caused by a snf1 mutation.  相似文献   

17.
Metabolic pathways of glucose during germination of Bacillus megaterium QM B1551 spores were studied by using specifically labeled glucose and gluconate. The Embden-Meyerhof pathway, the pentose cycle, and the direct oxidation route of glucose to gluconate (the gluconate pathway) were all operative at this stage; among those, gluconate accumulation was most predominant, especially in the early stage. Potassium fluoride, an enolase inhibitor, abolished the catabolism by the Embden-Meyerhof pathway totally without affecting gluconate accumulation. Under these conditions glucose was exclusively oxidized to gluconate. Gluconate thus accumulated could be metabolized further via phosphorylation by gluconate kinase. Remarkable gluconate accumulation was also demonstrated in several other spores requiring alanine as an effective germinant. NADH formed by the direct glucose oxidation may serve as a initial ATP source to phosphorylate glucose in germinating spores.  相似文献   

18.
In the biotechnological production of L-lysine and L-glutamate by Corynebacterium glutamicum media based on glucose, fructose or sucrose are typically used. Glutamate production by C. glutamicum was very similar on glucose, fructose, glucose plus fructose and sucrose. In contrast, lysine production of genetically defined C. glutamicum strains was significantly higher on glucose than on the other carbon sources. To test whether malic enzyme or fructose-1,6-bisphosphatase might limit growth and lysine on fructose, glucose plus fructose or sucrose, strains overexpressing either malE which encodes the NADPH-dependent malic enzyme or the fructose-1,6-bisphosphatase gene fbp were generated. Overexpression of malE did not improve lysine production on any of the tested carbon sources. Upon overexpression of fbp lysine yields on glucose and/or fructose were unchanged, but the lysine yield on sucrose increased twofold. Thus, fructose-1,6-bisphosphatase was identified as a limiting factor for lysine production by C. glutamicum with sucrose as the carbon source.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号