首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryogenic transmission electron microscopy (cryo-TEM) images of lysolipid-containing thermosensitive liposomes (LTSL) revealed that open liposomes and bilayer discs appeared when liposomes were cycled through the gel (Lβ′) to liquid-crystalline (Lα) phase transition. The amount of bilayer discs generated was dependent on the combined presence of PEG-lipid and lysolipid in the membrane. We hypothesize that micelle-forming membrane components stabilize the rim of bilayer openings and membrane discs that form when liposomes are cycled through TC.  相似文献   

2.
Upon storage of phospholipid liposome samples, lysolipids, fatty acids, and glycerol-3-phosphatidylcholine are generated as a result of acid- or base-catalyzed hydrolysis. Accumulation of hydrolysis products in the liposome membrane can induce fusion, leakage, and structural transformations of the liposomes, which may be detrimental or beneficial to their performance depending on their applications as, e.g., drug delivery devices. We investigated in the present study the influence of phospholipid hydrolysis on the aggregate morphology of DPPC/DSPE-PEG2000 liposomes after transition of the phospholipid membrane from the gel phase to liquid crystalline phase using high performance liquid chromatography (HPLC) in combination with static light scattering, dynamic light scattering, and cryo-transmission electron microscopy (cryo-TEM). The rates of DPPC hydrolysis in DPPC/DSPE-PEG2000 liposomes were investigated at a pH of 2, 4, or 6.5 and temperatures of 22 degrees C or 4 degrees C. Results indicate that following phase transition, severe structural reorganizations occurred in liposome samples that were partially hydrolyzed in the gel phase. The most prominent effect was an increasing tendency of liposomes to disintegrate into membrane discs in accordance with an increasing degree of phospholipid hydrolysis. Complete disintegration occurred when DPPC concentrations had decreased by, in some cases, as little as 3.6%. After extensive phospholipid hydrolysis, liposomes and discs fused to form large bilayer sheets as well as other more complex bilayer structures apparently due to a decreased ratio of lysolipid to palmitic acid levels in the liposome membrane.  相似文献   

3.
Upon storage of phospholipid liposome samples, lysolipids, fatty acids, and glycerol-3-phosphatidylcholine are generated as a result of acid- or base-catalyzed hydrolysis. Accumulation of hydrolysis products in the liposome membrane can induce fusion, leakage, and structural transformations of the liposomes, which may be detrimental or beneficial to their performance depending on their applications as, e.g., drug delivery devices. We investigated in the present study the influence of phospholipid hydrolysis on the aggregate morphology of DPPC/DSPE-PEG2000 liposomes after transition of the phospholipid membrane from the gel phase to liquid crystalline phase using high performance liquid chromatography (HPLC) in combination with static light scattering, dynamic light scattering, and cryo-transmission electron microscopy (cryo-TEM). The rates of DPPC hydrolysis in DPPC/DSPE-PEG2000 liposomes were investigated at a pH of 2, 4, or 6.5 and temperatures of 22 °C or 4 °C. Results indicate that following phase transition, severe structural reorganizations occurred in liposome samples that were partially hydrolyzed in the gel phase. The most prominent effect was an increasing tendency of liposomes to disintegrate into membrane discs in accordance with an increasing degree of phospholipid hydrolysis. Complete disintegration occurred when DPPC concentrations had decreased by, in some cases, as little as 3.6%. After extensive phospholipid hydrolysis, liposomes and discs fused to form large bilayer sheets as well as other more complex bilayer structures apparently due to a decreased ratio of lysolipid to palmitic acid levels in the liposome membrane.  相似文献   

4.
Latrotoxin-induced fusion of liposomes with bilayer phospholipid membranes   总被引:1,自引:0,他引:1  
Liposomes containing amphotericin B as ionophoric marker were used to investigate the fusion of bilayer phospholipid membranes with liposomes. It was found that latrotoxin isolated from black widow spider venom induced the fusion of liposomes with planar bilayer when liposomes and latrotoxin were administered at opposite sides of the membrane.  相似文献   

5.
Abstract

Target-sensitive liposomes are liposomes which spontaneously destablize when they come into contact with target membrane/surface. The principle lipid in the liposomes ingredient is dioleoyl phosphatidylethanolamine (DOPE) which readily forms inverted micelle at physiological conditions. Earlier design of the liposomes uses acylated antibody as both a bilayer stabilizer and a targeting ligand. Although the immunoliposomes specifically release then-contents upon binding with the target membrane, they are not stable enough for long-term storage. Recent improvement in the design uses a charged phospholipid as a bilayer stabilizer and uses acylated antibody or other ligands at a much lower concentration. The new liposomes are stable for long-term storage, yet still destablize when bound with a target membrane. The rate of destabilization is significantly enhanced at elevated temperatures. The physical and biological properties of these liposomes are reviewed in this paper.  相似文献   

6.
Liposomes containing amphotericin B as ionophoric marker were used to investigate the fusion of bilayer phospholipid membranes with liposomes. It was found that latrotoxin isolated from black widow spider venom induced the fusion of liposomes with planar bilayer when liposomes and latrotoxin were administered at opposite sides of the membrane.  相似文献   

7.
Bilayer asymmetry in the apical membrane may be important to the barrier function exhibited by epithelia in the stomach, kidney, and bladder. Previously, we showed that reduced fluidity of a single bilayer leaflet reduced water permeability of the bilayer, and in this study we examine the effect of bilayer asymmetry on permeation of nonelectrolytes, gases, and protons. Bilayer asymmetry was induced in dipalmitoylphosphatidylcholine liposomes by rigidifying the outer leaflet with the rare earth metal, praseodymium (Pr3+). Rigidification was demonstrated by fluorescence anisotropy over a range of temperatures from 24 to 50 degrees C. Pr3+-treatment reduced membrane fluidity at temperatures above 40 degrees C (the phase-transition temperature). Increased fluidity exhibited by dipalmitoylphosphatidylcholine liposomes at 40 degrees C occurred at temperatures 1-3 degrees C higher in Pr3+-treated liposomes, and for both control and Pr3+-treated liposomes permeability coefficients were approximately two orders of magnitude higher at 48 degrees than at 24 degrees C. Reduced fluidity of one leaflet correlated with significantly reduced permeabilities to urea, glycerol, formamide, acetamide, and NH3. Proton permeability of dipalmitoylphosphatidylcholine liposomes was only fourfold higher at 48 degrees than at 24 degrees C, indicating a weak dependence on membrane fluidity, and this increase was abolished by Pr3+. CO2 permeability was unaffected by temperature. We conclude: (a) that decreasing membrane fluidity in a single leaflet is sufficient to reduce overall membrane permeability to solutes and NH3, suggesting that leaflets in a bilayer offer independent resistances to permeation, (b) bilayer asymmetry is a mechanism by which barrier epithelia can reduce permeability, and (c) CO(2) permeation through membranes occurs by a mechanism that is not dependent on fluidity.  相似文献   

8.
Antifreeze proteins have been reported to be capable of maintaining the membrane integrity of cold sensitive mammalian cells when exposed to hypothermic temperatures. However the mechanism(s) whereby these proteins exert this protective effect is unknown. The present study used liposomes as a model system to examine the nature of the interactions between four antifreeze (glyco)protein types (AFP I, II, III and AFGP) and albumin, with lipid membranes. Fluorescein isothiocyanate labelling indicated that all of the proteins bound to the three liposome types (dielaidoylphosphatidylcholine (DEPC), dielaidoylphosphatidylethanolamine (DEPE) and dielaidoylphosphatidylglycerol (DEPG)). AFGP was found to be highly effective at preventing leakage from all three liposome compositions as they were cooled through their phase transition temperatures. This was not the case for the other proteins. All four antifreeze types prevented zwitterionic DEPC liposomes from leaking as they were cooled through their phase transition temperature. However, albumin was equally as effective, indicating that this capacity was not unique to antifreeze proteins. All of the proteins, except AFGP, induced the negatively charged DEPG liposomes to leak prior to cooling, and were less effective than AFGP in preventing phase transition leakage from DEPE liposomes. It is proposed that many proteins, including antifreeze proteins, can protect zwitterionic liposomes, such as DEPC, by binding to the lipid bilayer thereby maintaining the ordered structure of the membrane during phase transition. However, when the membrane contains a negatively charged polar group, such as with DEPE and DEPG, proteins, although bound to them, may not be able to maintain sufficient membrane organization to prevent leakage during phase transition or, they may gain entry into the lipid bilayer, disrupt the structure and induce leakage. These results imply that the efficacy of antifreeze proteins in the cold protection of mammalian cells will not only depend on protein structure, but also on the lipid composition of the cell membrane.  相似文献   

9.
Abstract

The characterization of two liposomal formulations of boronated DNA-interacting agents has been performed. It is shown that the two boronated drugs, WSA-Water Soluble Acridine and WSP-Water Soluble Phenantridine, can be encapsulated within unilamellar sterically stabilized liposomes with high drug-to-lipid ratios (up to 0.50:1 (mol:mol)), using transmembrane pH gradients. The steric stabilization of the liposomes was accomplished by the addition of DSPE-PEG(2000) (PEG-lipid) to DSPC/Cho lipid mixtures and the composition used was DSPC: Cho: DSPE-PEG 55:40:5 (moI%). The loading of the drugs resulted in drug precipitation in the liposomal aqueous core as observed by cryo-transmission electron microscopy (c-TEM). Moreover, it is shown that when pH gradients across the bilayer were used for remote loading of WSP or when ammonium sulfate gradients were used for remote loading of WSA, the formation of small bilayer fragments (discs) was induced. We present compelling evidence that the formation of discs is a consequence of precipitate growth in the liposomal interior. The precipitate growth causes some of the liposomes to rupture resulting in the above mentioned disc-formation and a substantial decrease in trapping efficiency. The in vitro stability of the drug loaded liposomes was excellent, both in buffer and in 25% human serum. For most of the formulations, the release of the drugs was below or around 10% after 24 hours at 37oC. Furthermore, the influence of initial internal pH and internal buffering capacity on release properties of WSA and WSP were investigated. It is shown that the release profiles of the drugs can be controlled, to a large extent, by varying the composition of the internal liposomal aqueous phase.  相似文献   

10.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in H(II) phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and H(II) phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the H(II) phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

11.
Phospholipids with covalently attached poly(ethylene glycol) (PEG lipids) are commonly used for the preparation of long circulating liposomes. Although it is well known that lipid/PEG-lipid mixed micelles may form above a certain critical concentration of PEG-lipid, little is known about the effects of PEG-lipids on liposome structure and leakage at submicellar concentrations. In this study we have used cryogenic transmission electron microscopy to investigate the effect of PEG(2000)-PE on aggregate structure in preparations of liposomes with different membrane compositions. The results reveal a number of important aggregate structures not documented before. The micrographs show that enclosure of PEG-PE induces the formation of open bilayer discs at concentrations well below those where mixed micelles begin to form. The maximum concentration of PEG-lipid that may be incorporated without alteration of the liposome structure depends on the phospholipid chain length, whereas phospholipid saturation or the presence of cholesterol has little or no effect. The presence of cholesterol does, however, affect the shape of the mixed micelles formed at high concentrations of PEG-lipid. Threadlike micelles form in the absence of cholesterol but adapt a globular shape when cholesterol is present.  相似文献   

12.
Lipid vesicles with incorporated ion channels from polyene antibiotic amphotericin B were used to investigate structures of planar membranes formed by Shindler's techniques. A planar membrane assembled on the aperture in a lavsan film from two layers generated at the air-aqueous liposome suspension interface is not a simple bilayer but a bimolecular membrane containing numerous partly fused liposomes. A complete fusion of liposomal membranes with the planar bilayer is an unlikely event during membrane formation. A planar bimolecular lipid membrane without incorporated liposomes can be made by a method consisting of three stages: formation of a lipid layer on the air-water interface of a suspension containing liposomes, transfer of this layer along the surface of the solution into a chamber containing a solution without liposomes where a lipid monomolecular layer forms gradually (within about 20 min) at the air-water interface, assembling of the planar bilayer membrane from this monolayer. The knowledge of the planar membrane structure may be useful in experiments on incorporation of membrane proteins into a planar lipid bilayer.  相似文献   

13.
Quercetin (QCT) is an important bioactive natural compound found in numerous edible plants. Since the lipid bilayer represents an essential compound of the cell membrane, QCT's direct interaction with this structure is of great interest. Therefore, we proposed to study the effects of QCT on DMPC liposomes containing cholesterol (Chol), and for this purpose Laurdan fluorescence was used. As a fluorescent probe, Laurdan is able to detect changes in membrane phase properties. When incorporated in lipid bilayers, Laurdan emits from two different excited states, a non-relaxed one when the bilayer packing is tight and a relaxed state when the bilayer packing is loose. The main tool for quantifying QCT's effects on phospholipid membranes containing Chol has been the analysis, the decomposition of Laurdan emission spectra in sums of two Gaussian functions on energy. This kind of approach has allowed good analysis of the balance between the two emitting states of Laurdan. Our results show that both Laurdan emission states are present to different extents in a wide temperature range for DMPC liposomes with Chol. QCT is decreasing the phase transition temperature in pure DMPC liposomes as proved by generalized polarization (GP) values. QCT also quenches Laurdan fluorescence, depending on the temperature and the presence of Chol in the membrane. Stern-Volmer constants were calculated for different lipid membrane compositions, and the conclusion was that the relaxed state favors the nonradiative transitions of the fluorophore.  相似文献   

14.
Vectamidine is a liposome-forming double-chain cationic amphiphile. The present work was aimed to microscopically study the interactions of Vectamidine liposomes with the human erythrocyte plasma membrane. Vectamidine rapidly induced stomatocytic shapes. Attachment of Vectamidine liposomes to the erythrocyte induced a strong local invagination of the membrane. This frequently resulted in a complete encapsulation of the liposome. Liposomes composed of phosphatidylcholine (neutral) or phosphatidylserine/phosphatidylcholine (anionic) did not perturb the erythrocyte shape. Our results indicate that besides an attraction of Vectamidine liposomes to the plasma membrane, there is a preference of Vectamidine for the inner bilayer leaflet. We suggest that cationic amphiphiles may transfer from membrane-attached liposomes to the plasma membrane and then translocate to the inner bilayer leaflet where they induce a strong local inward bending of the plasma membrane resulting in an encapsulation of the liposome.  相似文献   

15.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (HII phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the HII phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in HII phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and HII phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the HII phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

16.
Interaction of latrotoxin with phospholipid vesicles and bilayer lipid membranes is shown to proceed differently. Latrotoxin when interacting with liposomes is sorbed on the membrane surface forming no ionic channels in this case. Only latrotoxin fragments obtained due to the toxin hydrolysis by pronase or trypsin are able to form channels. These fragments being inserted into liposomes are coupled strongly with the membrane and are not subjected to the further splitting by proteinases. The electrophoretic spectrum of peptides bound with liposomes is presented by protein components with a molecular weight of 116, 100, 92, 67, 52 and 45 kDa, while zone typical of latrotoxin is absent in this spectrum. The method of small-angle X-rays scattering has shown that tryptic fragments of latrotoxin penetrate into the phospholipid bilayer of liposomes.  相似文献   

17.
Arf family GTP-binding proteins function in the regulation of membrane-trafficking events and in the maintenance of organelle structure. They act at membrane surfaces to modify lipid composition and to recruit coat proteins for the generation of transport vesicles. Arfs associate with membranes through insertion of an N-terminal myristoyl moiety in conjunction with an adjacent amphipathic alpha-helix, which embeds in the lipid bilayer when Arf1 is GTP-bound. In this issue of the Biochemical Journal, Lundmark et al. report that myristoylated Arfs in the presence of GTP bind to and cause tubulation of liposomes, and that GTP exchange on to Arfs is more efficient in the presence of liposomes of smaller diameter (increased curvature). These findings suggest that Arf protein activation and membrane interaction may initiate membrane curvature that will be enhanced further by coat proteins during vesicle formation.  相似文献   

18.
The phycocycins (PC) from the thermophilic cyanobacterium Myxosarcina concinna Printz and the Chi a-containing liposomes were prepared and their spectral characteristics were measured before the energy transfer from PC to Chi a-containing liposomes was studied. It was found that the efficiency of light energy transfer was decreased when the surface of the vesicle bilayer was negatively charged. It was relatively increased when the membrane was incorporated with the positively-charged surfactaht, dioctadecy-ldimethylammonium chloride (DODAC), of increasing concentration from 0 to 30 mol%. These results indicated that the electrostatic force might have great effects on the energy transfer from phycocycins to Chi a-containing liposomes.  相似文献   

19.
The water permeability of various liposome membranes has been determined at 298 K by measuring the NMR longitudinal water proton relaxation rate of vesicles encapsulating the clinically approved Gd-HPDO3A complex (HPDO3A = 10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid). Two basic formulations based on DPPC (dipalmitoylphosphatidylcholine) and POPC (palmitoyl-oleylphosphatidylcholine) phospholipids were selected and investigated. Furthermore, the permeability changes caused by the membrane incorporation of amphiphiles like cholesterol and/or metal complexes of interest for designing improved liposome-based MRI contrast agents, were also investigated. The incorporation of cholesterol and metal complexes bearing C18 saturated chains in POPC-based liposomes reduces the water diffusivity across the membrane bilayer. On the contrary, the incorporation of a macrocyclic metal complex bearing four C12 alkylic chains, one for each coordination arm of the ligand, considerably enhances the water permeability in DPPC-based liposomes. Finally, it is reported that the permeability of POPC-based bilayer is increased when the liposomes are subjected to an osmotic stress.  相似文献   

20.
T Nomura  K Kurihara 《Biochemistry》1987,26(19):6135-6140
Various odorants were found to depolarize azolectin liposomes. The results obtained are as follows. (1) Changes in the membrane potential of azolectin liposomes in response to various odorants were monitored by measuring changes in the fluorescence intensity of 3,3'-dipropylthiocarbocyanine iodide [disS-C3(5)]. Ten odorants examined increased the fluorescence intensity of the liposome-dye suspensions in a dose-dependent manner, which indicates that odorants depolarize the liposomes. Concentrations of odorants that depolarized the liposomes greatly varied among the odorants. There existed a good correlation between the minimum concentrations of odorants to depolarize the liposomes and the thresholds of respective odorants in the frog or porcine olfactory responses. (2) Addition of sphingomyelin (SM) to azolectin led to a large enhancement of depolarizations by nonanol, citral, and n-amyl acetate. The results indicate that lipid composition of liposomes is one of the factors that control the sensitivity to odorants. (3) Odorants changed the membrane fluidity of the liposomes, which was monitored by changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). The membrane fluidity was changed in concentration ranges of odorants similar to those where the membrane potential changes occurred, which suggests that changes in the membrane fluidity are related to generation of the membrane potential changes. (4) Changes in the membrane potential in response to odorants were electrically measured with the planar lipid bilayer made of an azolectin-SM (2:1 w/w) mixture. It was shown that odorants (nonanol, citral, and n-amyl acetate) depolarized the planar lipid bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号