首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine whether increased oxidative stress in vivo promotes telomere shortening in CAST/Ei mice. We explored the effects of L-buthionine sulfoximine treatment (BSO) on telomere length. BSO shortened telomere length in white fat, brown fat, skin, tail, and testis in concert with diminished tissue glutathione content, increased tissue carbonyl content, and increased plasma advanced oxidized protein products. Telomerase activity was mainly detected in testis but no reduction of telomerase activity was observed in response to BSO. In conclusion, BSO-mediated increase in systemic oxidative stress shortens telomeres in several tissues of the mouse. The variable effect of BSO treatment on telomere length in different tissue may result from their different adaptive antioxidative capacity.  相似文献   

2.
文蕾  凌贤龙 《生命科学》2010,(10):1005-1008
端粒酶是一种逆转录酶,主要存在于细胞核,其主要功能是维持端粒长度,有助于细胞永生化。现已发现,氧化应激可以改变端粒酶活性,促使端粒酶从细胞核转位到线粒体,因而不能继续维持端粒长度,使细胞端粒缩短。端粒酶线粒体转位的非依赖端粒功能包括改善线粒体功能、减少细胞氧化应激、拮抗细胞凋亡。  相似文献   

3.
4.
5.
6.
7.
Buthionine sulfoximine inhibits gamma-glutamylcysteine synthetase, the enzyme catalyzing the first reaction of glutathione (GSH) biosynthesis. GSH synthesis is blocked in animals or cultured cells exposed to buthionine sulfoximine, and GSH is substantially depleted in cells or tissues with moderate to high rates of GSH utilization. Studies reported to date have used DL-buthionine (SR)-sulfoximine or L-buthionine (SR)-sulfoximine, mixtures of four and two isomers, respectively. The present report describes a chiral solvent HPLC procedure for the analytical separation of the diastereomers of L-buthionine (SR)-sulfoximine and the separation of those isomers from the unresolved diastereomers of D-buthionine (SR)-sulfoximine. L-buthionine (R)-sulfoximine was isolated preparatively by repeated crystallization of L-buthionine (SR)-sulfoximine from water; L-buthionine (S)-sulfoximine was obtained by crystallization as the trifluoroacetate salt in ethanol/hexane mixtures. The absolute configuration, bond lengths and angles of L-buthionine (R)-sulfoximine were determined by X-ray diffraction. In vitro studies demonstrate that L-buthionine (R)-sulfoximine is a relatively weak inhibitor of rat kidney gamma-glutamylcysteine synthetase; binding is competitive with L-glutamate. L-buthionine (S)-sulfoximine is a tight-binding, mechanism-based inhibitor of the enzyme. Since L-buthionine sulfoximine is initially bound as a transition-state analogue, identification of the inhibitory diastereomer elucidates the steric relationships among ATP, glutamate, and cysteine within the active site. When administered to mice, L-buthionine (S)-sulfoximine (0.2 mmol/kg) was as effective as L-buthionine (SR)-sulfoximine (0.4 mmol/kg) in causing GSH depletion in liver, kidney, and pancreas. L-Buthionine (R)-sulfoximine (0.2 mmol/kg) did not cause significant GSH depletion in liver or pancreas. The L-(R)-diastereomer caused a modest GSH depletion in kidney that is tentatively attributed to interference with gamma-glutamylcyst(e)ine transport.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
Direct experimental evidence implicates telomere erosion as a primary cause of cellular senescence. Using a well characterized model system for breast cancer, we define here the molecular and cellular consequences of adriamycin treatment in breast tumor cells. Cells acutely exposed to adriamycin exhibited an increase in p53 activity, a decline in telomerase activity, and a dramatic increase in beta-galactosidase, a marker of senescence. Inactivation of wild-type p53 resulted in a transition of the cellular response to adriamycin treatment from replicative senescence to delayed apoptosis, demonstrating that p53 plays an integral role in the fate of breast tumor cells treated with DNA-damaging agents. Stable introduction of hTERT, the catalytic protein component of telomerase, into MCF-7 cells caused an increase in telomerase activity and telomere length. Treatment of MCF-7-hTERT cells with adriamycin produced an identical senescence response as controls without signs of telomere shortening, indicating that the senescence after treatment is telomere length-independent. However, we found that exposure to adriamycin resulted in an overrepresentation of cytogenetic changes involving telomeres, showing an altered telomere state induced by adriamycin is probably a causal factor leading to the senescence phenotype. To our knowledge, these data are the first to demonstrate that the mechanism of adriamycin-induced senescence is dependent on both functional p53 and telomere dysfunction rather than overall shortening.  相似文献   

17.
Progressive telomere shortening occurs with the division of primary human cells and activates tumor suppressor pathways, triggering senescence and inhibiting tumorigenesis. Loss of p53 function, however, allows continued cell division despite increasing telomere dysfunction and entry into telomere crisis. Recent data suggest that the severe chromosomal instability of telomere crisis promotes secondary genetic changes that facilitate carcinogenesis. Reactivation of telomerase stabilizes telomere ends and allows continued tumor growth.  相似文献   

18.
Regional hyperthermia has potential for human cancer treatment, particularly in combination with systemic chemotherapy or radiotherapy. The mechanisms involved in heat-induced cell killing are currently unknown. Hyperthermia may increase oxidative stress in cells, and thus, oxidative stress could have a role in the mechanism of cell death. We use hydrogen peroxide as a model oxidant to improve understanding of interactions between heat and oxidative stress. Heat increased cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Altered levels of cellular antioxidants should create an imbalance between prooxidant and antioxidant systems, thus modifying cytotoxic responses to heat and to oxidants. We determine the involvement of the two cellular antioxidant defenses against peroxides, catalase and the glutathione redox cycle, in cellular sensitivity to heat, to hydrogen peroxide, and to heat combined with the oxidant. Defense systems were either inhibited or increased. For inhibition studies, intracellular glutathione was diminished to less than 15% of its initial level by treatment with L-buthionine sulfoximine (1 mM, 24 h). Inhibition of catalase was achieved with 3-amino-1,2,4-triazole (20 mM, 2 h), which caused a 80% decrease in endogenous enzyme activity. To increase antioxidants, cells were pretreated with the thiol-containing reducing agents, N-acetyl-L-cysteine, 2-oxo-4-thiazolidine carboxylate, and 2-mercaptoethane sulfonate. These compounds increased intracellular glutathione levels by 30%. Catalase activity was increased by addition of exogenous enzyme to cells. We show that levels of glutathione and catalase affect cellular cytotoxic responses to heat and hydrogen peroxide, either used separately or in combination. These findings are relevant to mechanisms of cell killing at elevated temperatures and suggest the involvement of oxidative stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号