首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Intracellular Ca2+ at concentrations ranging from 0 to 10 mumol/l increases the shear modulus of surface elasticity (mu) and the surface viscosity (eta) of human red blood cells by 20% and 70%, respectively. K+ selective channels in the red cell membrane become activated by Ca2+. The activation still occurs to the same extent when the membrane skeleton is degraded by incorporation of trypsin into resealed red cell ghosts, suggesting that the channel activation is not controlled by the proteins of the membrane skeleton and is independent of mu and eta. Incorporation of trypsin at concentrations ranging from 0 to 100 ng/ml into red cell ghosts leads to a graded digestion of spectrin, a cleavage of the band 3 protein and a release of the binding proteins ankyrin and band 4.1. These alterations are accompanied by an increase of the lateral mobility of the band 3 protein which, at 40 ng/ml trypsin, reaches a plateau value where the rate of lateral diffusion is enhanced by about two orders of magnitude above the rate measured in controls without trypsin. Proteolytic digestion by 10-20 ng/ml trypsin leads to a degradation of more than 40% of the spectrin and increases the rate of lateral diffusion to about 20-70% of the value observed at the plateau. Nevertheless, mu and eta remain virtually unaltered. However, the stability of the membrane is decreased to the point where a slight mechanical extension, or the shear produced by centrifugation results in disintegration and vesiculation, precluding measurements of eta and mu in ghosts treated with higher concentrations of trypsin. These findings indicate that alterations of the structural integrity of the membrane skeleton exert drastically different effects on mu and eta on the one hand and on the stability of the membrane on the other.  相似文献   

2.
We studied the binding of actin to the erythrocyte membrane by a novel application of falling ball viscometry. Our approach is based on the notion that if membranes have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin dimmer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out plus heat denatured spectrin, ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experiments show that the amount of actin bound to the inside-out vesicles is enhanced in the presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction with membrane- bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1, the high- affinity membrane attachment site for spectrin) reduces both spectrin binding to the inside-out vesicles and their capacity to stimulate increase in viscosity of actin in the presence of spectrin + actin are inhibited by the addition of the water-soluble 72,000- dalton fragment of ankyrin, which is known to inhibit spectrin reassociation to the membrane. The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified spectrin dimer or tetramer are not observed when samples are incubated at 0 degrees C. This temperature dependence may be related to the temperature-dependent associations we observe in solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by spectrin tetramer plus band 4.1 at 0 degrees C, and enhances it at 32 degrees C. We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic surface of the erythrocyte membrane.  相似文献   

3.
A population of band 3 proteins in the human erythrocyte membrane is known to have restricted rotational mobility due to interaction with cytoskeletal proteins. We have further investigated the cause of this restriction by measuring the effects on band 3 rotational mobility of rebinding ankyrin and band 4.1 to ghosts stripped of these proteins as well as spectrin and actin. Rebinding either ankyrin or 4.1 alone has no detectable effect on band 3 mobility. Rebinding both these proteins together does, however, reimpose a restriction on band 3 rotation. The effect on band 3 rotational mobility of rebinding ankyrin and 4.1 are similar irrespective of whether or not band 4.2 is removed from the membrane. We suggest that ankyrin and 4.1 together promote the formation of slowly rotating clusters of band 3.  相似文献   

4.
《Biorheology》1997,34(4-5):327-348
Two models of spectrin elasticity are developed and compared to experimental measurements of the red blood cell (RBC) membrane shear modulus through the use of an elastic finite element model of the RBC membrane skeleton. The two molecular models of spectrin are: (i) An entropic spring model of spectrin as a flexible chain. This is a model proposed by several previous authors. (ii) An elastic model of a helical coiled-coil which expands by increasing helical pitch. In previous papers, we have computed the relationship between the stiffness of a single spectrin molecule (K) and the shear modulus of a network (μ), and have shown that this behavior is strongly dependent upon network topology. For realistic network models of the RBC membrane skeleton, we equate μ to micropipette measurements of RBCs and predict K for spectrin that is consistent with the coiled-coil molecular model. The value of spectrin stiffness derived from the entropic molecular model would need to be at least 30 times greater to match the experimental results. Thus, the conclusion of this study is that a helical coiled-coil model for spectrin is more realistic than a purely entropic model.  相似文献   

5.
We have used optical tweezers to study the elasticity of red cell membranes; force was applied to a bead attached to a permeabilized spherical ghost and the force-extension relation was obtained from the response of a second bead bound at a diametrically opposite position. Interruption of the skeletal network by dissociation of spectrin tetramers or extraction of the actin junctions engendered a fourfold reduction in stiffness at low applied force, but only a twofold change at larger extensions. Proteolytic scission of the ankyrin, which links the membrane skeleton to the integral membrane protein, band 3, induced a similar effect. The modified, unlike the native membranes, showed plastic relaxation under a prolonged stretch. Flaccid giant liposomes showed no measurable elasticity. Our observations indicate that the elastic character is at least as much a consequence of the attachment of spectrin as of a continuous membrane-bound network, and they offer a rationale for formation of elliptocytes in genetic conditions associated with membrane-skeletal perturbations. The theory of Parker and Winlove for elastic deformation of axisymmetric shells (accompanying paper) allows us to determine the function BH(2) for the spherical saponin-permeabilized ghost membranes (where B is the bending modulus and H the shear modulus); taking the literature value of 2 x 10(-19) Nm for B, H then emerges as 2 x 10(-6) Nm(-1). This is an order of magnitude higher than the value reported for intact cells from micropipette aspiration. Reasons for the difference are discussed.  相似文献   

6.
Hereditary spherocytosis (HS) is an inherited abnormality of red cell shape and results from defective interactions amongst the components of the cytoskeleton. It is known that spectrin/actin dissociates in low ionic strength media from ghosts and cytoskeletons at a rate which is slower for HS than normal preparations. Hybridization experiments have established that this behaviour is not due to a defective spectrin or actin but resides in a spectrin-binding component of the membrane [Hill, Sawyer, Howlett & Wiley (1981) Biochem. J. 201, 259-266]. In the present study erythrocyte shells have been examined in low ionic strength media and a similar difference in the rate of solubilization has been revealed. Since band 4.1 (but not band 2.1) is a common component of cytoskeletons and shells it is possible that 4.1 may be abnormal in the HS condition. The interaction of band 4.1 with spectrin/actin was examined by low shear falling ball viscometry. The addition of a mixture of band 2.1 and 4.1 to a solution of actin and spectrin tetramer increased the viscosity due to cross-linking of the cytoskeletal elements by band 4.1. When band 2.1/4.1 mixtures were derived from five HS families the viscosity was increased to a greater extent than in the normal controls. This difference was not a result of alterations in the calcium dependence of the spectrin/actin-band 4.1 interaction. The results imply that band 4.1 may be defective in the HS condition.  相似文献   

7.
We present an overview of the currently known molecular basis of red cell membrane disorders. A detailed discussion of the structure of the red cell membrane and the pathophysiology and clinical aspects of its disorders is reported. Generally speaking, hereditary spherocytosis (HS) results from a loss of erythrocyte surface area. The mutations of most cases of HS are located in the following genes: ANK1, SPTB, SLC4A1, EPB42 and SPTA1, which encode for ankyrin, spectrin beta-chain, the anion exchanger 1 (band 3), protein 4.2 and spectrin alpha-chain, respectively. Hereditary elliptocytosis (HE) reflects a diminished elasticity of the skeleton. Its aggravated form, hereditary pyropoikilocytosis (HPP), implies that the skeleton undergoes further destabilization. The mutations responsible for HE and HPP, lie in the SPTA1 and SPTB gene, and in the EPB41 gene encoding protein 4.1. Allele alpha LELY is a common polymorphic allele, which plays the role of an aggravating factor when it occurs in trans of an elliptocytogenic allele of the SPTA1 gene. Southeast Asian ovalocytosis derives from a change in band 3. The genetic disorders of membrane permeability to monovalent cations required a positional cloning approach. In this respect, channelopathies represent a new frontier in the field. Dehydrated hereditary stomatocytosis (DHS) was shown to belong to a pleiotropic syndrome: DHS + fetal edema + pseudohyperkalemia, which maps 16q23-24. Splenectomy is strictly contraindicated in DHS and another disease of the same class, overhydrated hereditary stomatocytosis, because it increases the risk of thromboembolic accidents.  相似文献   

8.
We have characterized the association of the intermediate filament protein, vimentin, with the plasma membrane, using radioiodinated lens vimentin and various preparations of human erythrocyte membrane vesicles. Inside-out membrane vesicles (IOVs), depleted of spectrin and actin, bind I125-vimentin in a saturable manner unlike resealed, right-side-out membranes which bind negligible amounts of vimentin in an unsaturable fashion. The binding of vimentin to IOVs is abolished by trypsin or acid treatment of the vesicles. Extraction of protein 4.1 or reconstitution of the membranes with purified spectrin do not basically affect the association. However, removal of ankyrin (band 2.1) significantly lowers the binding. Upon reconstitution of depleted vesicles with purified ankyrin, the vimentin binding function is restored. If ankyrin is added in excess the binding of vimentin to IOVs is quantitatively inhibited, whereas protein 4.1, the cytoplasmic fragment of band 3, band 6, band 4.5 (catalase), or bovine serum albumin do not influence it. Preincubation of the IOVs with a polyclonal anti-ankyrin antibody blocks 90% of the binding. Preimmune sera and antibodies against spectrin, protein 4.1, glycophorin A, and band 3 exhibit no effect. On the basis of these data, we propose that vimentin is able to associate specifically with the erythrocyte membrane skeleton and that ankyrin constitutes its major attachment site.  相似文献   

9.
Anthony J. Baines 《Protoplasma》2010,244(1-4):99-131
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins—spectrin, ankyrin, 4.1 and adducin—which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin–ankyrin–4.1–adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin–ankyrin–4.1–adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.  相似文献   

10.
Human erythrocyte membranes (ghosts) from acid/citrate/dextrose preserved blood were digested with trypsin (protein/trypsin = 100:1) under hypotonic conditions and then analyzed by SDS-polyacrylamide gel electrophoresis. After digestion for about 20-30 s at 0 degree C, only ankyrin had disappeared and other bands including spectrin, actin, band 4.1 and band 3 remained intact. This observation was supported by electron micrographs showing that the horizontally disposed, filamentous structure was a little apart from the lipid bilayer and its components were not destroyed. In contrast to intact ghosts, treatment with chlorpromazine, or Mg-ATP did not induce shape change in these trypsin-treated ghosts. The number of transformable cells correlated closely with the amount of remaining ankyrin in the SDS-polyacrylamide gel electrophoresis pattern. Furthermore, the chlorpromazine- and Mg-ATP-induced decreases in viscosity of suspensions of erythrocyte ghosts were also prevented by trypsin treatment for 20-30 s at 0 degree C. These findings suggest that ankyrin plays an important role in the change in shape and deformability of erythrocyte ghosts. The molecular mechanism of drug-induced shape change and the role of undermembrane structure in regulating erythrocyte shape and deformability are discussed.  相似文献   

11.
The microtubule-associated proteins MAPs 1 and 2 from pig brain have been found to react with antibodies directed against human ankyrin and spectrin, respectively (Bennett and Davis, 1981; Davis and Bennett, 1982). In a complementary approach we have prepared antibodies against MAP1 alpha. MAP1 gamma and MAP2 purified from pig brain and tested their reactivity with human erythrocyte membrane proteins. Anti-MAP1 alpha was shown to react with alpha and beta-spectrin and with protein 4.1; anti-MAP1 gamma reacted with alpha-spectrin and ankyrin and with a 60 K peptide which copurified with human spectrin. Finally anti-MAP2 was specific for beta-spectrin and protein 4.2. The biological function of protein 4.2 is still unknown but details on the interactions between ankyrin, spectrin and protein 4.1 and their role in mediating the linkage of oligomeric actin on the erythrocyte membrane are well documented. The present results, which demonstrate extended immunological analogies between pig brain high molecular weight MAPs and human erythrocyte membrane proteins, may reflect the presence, in the two families of proteins, of similar functionally important epitopes.  相似文献   

12.
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress.  相似文献   

13.
In the present study we have examined several types of nucleated cells with respect to the occurrence and subcellular distribution of ankyrin. In red blood cells ankyrin links and integral membrane protein, the anion channel (band 3), to the subplasmalemmal cytoskeleton which is comprised largely of spectrin and actin. Since nucleated cells also contain spectrin and other constituents of the erythrocyte membrane skeleton it is possible that in nonerythroid cells ankyrin is also important for connecting membrane proteins to the cytoskeleton. We show here that membrane fractions of rat brain and various types of rat epithelial cells contain analogs of ankyrin at Mr 210,000 and 190,000 that are immunologically related to human erythrocyte ankyrin. In transporting epithelial cells, such as epithelia of the intestine, pancreas, prostate or kidney (various species) the analogs of ankyrin are confined to the basolateral plasma membrane and are absent from the apical membrane. In neurons of the central and peripheral nervous system and in photoreceptors of the retina, ankyrin was found restricted to the membrane of the cell body and axons and was not detected by immunostaining along the afferent processes (dendrites, photoreceptor inner and outer segments). Linkage of integral membrane proteins via ankyrin to the spectrin-based membrane cytoskeleton may provide a molecular basis for restricting the lateral mobility of certain membrane proteins and localizing them in a nonrandom or polarized fashion at specialized domains of the plasma membrane.  相似文献   

14.
Although immunological homologues of erythrocyte membrane proteins have been individually discovered in a wide variety of tissues and cultured cells, the major structural components of the membrane have not yet been demonstrated simultaneously in the same cell type. Thus, considerable uncertainty continues to exist concerning whether the red cell homologues form elements of a structure which is similar to or unique from the framework which supports the erythrocyte membrane. Because the red cell cytoskeletal proteins, spectrin, actin and band 4.1, have been previously found in the superficial cortex of the lens, we decided to determine whether the corresponding membrane anchoring components of band 3 and ankyrin also occur in this cell type. Using antiserum specific for band 3 and ankyrin, we report the existence of immunologically cross-reactive proteins of similar molecular weight. Because these anchoring proteins appear and disappear coordinately with the aforementioned cytoskeletal proteins during the intermediate stages of lens cell maturation, it is conceivable that an erythrocyte-like membrane structural organization may occur transiently in the eye lens.  相似文献   

15.
Brain membranes contain an actin-binding protein closely related in structure and function to erythrocyte spectrin. The proteins that attach brain spectrin to membranes are not established, but, by analogy with the erythrocyte membrane, may include ankyrin and protein 4.1. In support of this idea, proteins closely related to ankyrin and 4.1 have been purified from brain and have been demonstrated to associate with brain spectrin. Brain ankyrin binds with high affinity to the spectrin beta subunit at the midregion of spectrin tetramers. Brain ankyrin also has binding sites for the cytoplasmic domain of the erythrocyte anion channel (band 3), as well as for tubulin. Ankyrins from brain and erythrocytes have a similar domain structure with protease-resistant domains of Mr = 72,000 that contain spectrin-binding activity, and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg membrane protein, or about twice the number of copies of spectrum beta chains. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes, and it has the potential to attach microtubules to membranes as well as to interconnect microtubules with spectrin-associated actin filaments. Another spectrin-binding protein has been purified from brain membranes, and this protein cross-reacts with erythrocyte 4.1. Brain 4.1 is identical to the membrane protein synapsin, which is one of the brain's major substrates for cAMP-dependent and Ca/calmodulin-dependent protein kinases with equivalent physical properties, immunological cross-reaction, and peptide maps. Synapsin (4.1) is present at about 60 pmol/mg membrane protein, and thus is a logical candidate to regulate certain protein linkages involving spectrin.  相似文献   

16.
The membrane skeleton forms a scaffold on the cytoplasmic side of the plasma membrane. The erythrocyte membrane represents an archetype of such structural organization. It has been documented that a similar membrane skeleton also exits in the Golgi complex. It has been previously shown that βII spectrin and ankyrin G are localized at the lateral membrane of human bronchial epithelial cells. Here we show that protein 4.1N is also located at the lateral membrane where it associates E-cadherin, β-catenin and βII spectrin. Importantly, depletion of 4.1N by RNAi in human bronchial epithelial cells resulted in decreased height of lateral membrane, which was reversed following re-expression of mouse 4.1N. Furthermore, although the initial phase of lateral membrane biogenesis proceeded normally in 4.1N-depleted cells, the final height of the lateral membrane of 4.1N-depleted cells was shorter compared to that of control cells. Our findings together with previous findings imply that 4.1N, βII spectrin and ankyrin G are structural components of the lateral membrane skeleton and that this skeleton plays an essential role in the assembly of a fully functional lateral membrane.  相似文献   

17.
While the temporal sequences of the synthesis and assembly of membrane skeletal proteins has been studied during erythroid maturation, relatively little is known about the events which initiate the assembly of membrane skeleton at the early stages of mammalian erythroid commitment. To investigate the early events that initiate the assembly of the membrane skeleton in mammalian erythroid cells, we have studied the synthesis and assembly of membrane skeletal proteins in murine Rauscher erythroleukemia virus-transformed cells. These cells are blocked in differentiation at around the early progenitor (burst forming unit-erythroid, BFUe) cell stage but can be induced to differentiate in vitro. Pulse-labeling studies reveal that Rauscher cells actively synthesize alpha spectrin, beta spectrin, ankyrin and band 4.1 proteins. However, the synthesis of the band 3 protein and its mRNA are barely detectable in these cells. The peripheral membrane skeletal components assemble only transiently in the membrane skeleton and turn over rapidly, resulting in about 20-fold lower steady state levels than are found in mature erythrocytes. Upon induction with erythropoietin and dimethyl sulfoxide, the mRNA level and synthesis of band 3 are increased about 50-fold. In contrast, the synthesis of spectrin, ankyrin and band 4.1 is increased only about 1.5 to 2.0-fold. However, after induction, the fraction of these proteins assembled on the membrane is increased, their half-lives on the membrane are nearly doubled with a concomitant 4 to 5-fold increase in their steady-state levels. These results suggest that the synthesis of peripheral membrane proteins is detected at the earliest stages of erythroid commitment and increases only slightly during further differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The principal bridge connecting the erythrocyte membrane to the spectrin-based skeleton is established by band 3 and ankyrin; mutations leading to reduced bridge formation or increased bridge rupture result in morphological and mechanical abnormalities. Because membrane mechanical properties are determined in part by the protein interactions that stabilize the membrane, we have evaluated the rates of rupture and reattachment of band 3-ankyrin bridges under both resting and mechanically stressed conditions. To accomplish this, we have examined the rate of ankyrin displacement from inside-out vesicles by the hexahistidine-tagged cytoplasmic domain of band 3, cdb3-(His)6 and the rate of substitution of cdb3-(His)6 into endogenous band 3-ankyrin bridges in resealed erythrocytes in the presence and absence of shear stress. We demonstrate that 1) exogenous cdb3-(His)6 displaces endogenous ankyrin from IOVs with a half-time and first order rate constant of 42 +/- 14 min and 0.017 +/- 0.0058 min(-1), respectively; 2) exogenous cdb3-(His)6 substitutes endogenous band 3 in its linkage to ankyrin in resealed cells with a half-time and first order rate constant of 12 +/- 3.6 min and 0.060 +/- 0.019 min(-1), respectively; 3) cdb3-(His)6-mediated rupture of the band 3-ankyrin bridge in resealed cells results in decreased membrane mechanical stability, decreased deformability, abnormal morphology, and spontaneous vesiculation of the cells; and 4) the above on/off rates are not significantly accelerated by mechanical shear stress. We conclude that the off rates of the band 3-ankyrin interaction are sufficiently slow to allow sustained erythrocyte deformation without loss of elasticity.  相似文献   

19.
Cellular differentiation is often accompanied by the expression of specialized plasma membrane proteins which accumulate in discrete regions. The biogenesis of these specialized membrane domains involves the assembly and co-localisation of a spectrin-based membrane skeleton. While the constituents of the membrane skeleton in non-erythroid cells are often immunologically related to erythroid spectrin, ankyrin, and protein 4.1, there are structural and functional differences between the isoforms of these membrane skeleton polypeptides, as well as highly variable patterns of expression during cellular differentiation. We consider this heterogeneity of structure and expression during development in the context of the hypothesis that non-erythroid spectrin, ankyrin, and protein 4.1 are involved in the formation of specialized membrane domains.  相似文献   

20.
1. In whole ghosts, ankyrin, protein 4.1, protein band 3 and spectrin are lysed by purified calpain I in the presence of calcium. 2. Limited calpain lysis of purified ankyrin results in several peptides, including a 85 kD peptide bearing the ankyrin interaction site for the protein band 3 internal fragment (43 kD), and a 55 kD peptide carrying the ankyrin-spectrin interaction site. 3. These peptides are differently phosphorylated: the 85 kD by cytosol casein kinase, and the 55 kD by membrane casein kinase. 4. Protein 4.1 lysis mainly produces a 30 kD peptide resistant to proteolysis. 5. The spectrin beta-chain is more sensitive to calpain cleavage than the alpha chain; both chains seem to be cleaved in a similar sequential manner. 6. Limited proteolysis of spectrin dimer does not impede tetramerization in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号