首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Waters AP 《Cell》2005,122(2):149-151
The life cycle of the malaria parasite (Plasmodium) is remarkably complex. Malaria parasites must engage in highly specific and varied interactions with cell types of both the mammalian host and the mosquito vector. In this issue of Cell, report detailed molecular insights into an intimate interaction between a malaria parasite protein and its host cell receptor that enables the parasite to invade erythrocytes.  相似文献   

2.
Apicomplexan parasites exhibit a great variety of complex life cycles that require adaptation to different niches of parasitism. They invade different host cells and highjack their biological functions. Plasmodium falciparum, responsible for the deadliest form of human malaria, causes disease while completely remodeling the erythrocytes of its human host through mechanisms that are only partly understood. Recent developments in ultrastructural technologies offer new opportunities to investigate fundamental aspects in the biology of the parasite in a three-dimensional (3D) perspective. Here we bring together recent work on host cell invasion, hemoglobin uptake, protein export and nuclear dynamics. A comprehensive 3D view of the ultrastructural biology of the parasite may shed new light on cellular mechanisms that underlie the pathogenicity of P. falciparum.  相似文献   

3.
Most Apicomplexa are obligatory intracellular parasites that multiply inside a so-called parasitophorous vacuole (PV) formed upon parasite entry into the host cell. Plasmodium , the agent of malaria and the Apicomplexa most deadly to humans, multiplies in both hepatocytes and erythrocytes in the mammalian host. Although much has been learned on how Apicomplexa parasites invade host cells inside a PV, little is known of how they rupture the PV membrane and egress host cells. Here, we characterize a Plasmodium protein, called LISP1 ( li ver- s pecific p rotein 1), which is specifically involved in parasite egress from hepatocytes. LISP1 is expressed late during parasite development inside hepatocytes and locates at the PV membrane. Intracellular parasites deficient in LISP1 develop into hepatic merozoites, which display normal infectivity to erythrocytes. However, LISP1-deficient liver-stage parasites do not rupture the membrane of the PV and remain trapped inside hepatocytes. LISP1 is the first Plasmodium protein shown by gene targeting to be involved in the lysis of the PV membrane.  相似文献   

4.
The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand-receptor interactions. Some strains of P. falciparum are sensitive to neuraminidase treatment of the host erythrocyte and these parasites have been termed sialic acid-dependent as they utilize receptors containing sialic acid. In contrast, other strains can efficiently invade neuraminidase-treated erythrocytes and hence are sialic acid-independent. The molecular interactions that allow P. falciparum to differentially utilize receptors for merozoite invasion are not understood. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1, a member of this protein family, appears to be expressed in all parasite lines analysed but there are marked differences in the level of expression between different strains. We have used targeted gene disruption of the PfRh1 gene in P. falciparum to show that the encoded protein is required for sialic acid-dependent invasion of human erythrocytes. The DeltaPfRh1 parasites are able to invade normally; however, they utilize a pattern of ligand-receptor interactions that are more neuraminidase-resistant. Current data suggest a strategy based on the differential function of specific PfRh proteins has evolved to allow P. falciparum parasites to utilize alternative receptors on the erythrocyte surface for evasion of receptor polymorphisms and the host immune system.  相似文献   

5.
Invasion of red blood cells by malaria parasites   总被引:22,自引:0,他引:22  
Cowman AF  Crabb BS 《Cell》2006,124(4):755-766
The malaria parasite is the most important member of the Apicomplexa, a large and highly successful phylum of intracellular parasites. Invasion of host cells allows apicomplexan parasites access to a rich source of nutrients in a niche that is largely protected from host defenses. All Apicomplexa adopt a common mode of host-cell entry, but individual species incorporate unique features and utilize a specific set of ligand-receptor interactions. These adhesins ultimately connect to a parasite actin-based motor, which provides the power for invasion. While some Apicomplexa can invade many different host cells, the disease-associated blood-stage form of the malaria parasite is restricted to erythrocytes.  相似文献   

6.
Malaria parasites invade erythrocytes of their host both for asexual multiplication and for differentiation to male and female gametocytes – the precursor cells of Plasmodium gametes. For further development the parasite is dependent on efficient release of the asexual daughter cells and of the gametes from the host erythrocyte. How malarial parasites exit their host cells remains largely unknown. We here report the characterization of a Plasmodium berghei protein that is involved in egress of both male and female gametes from the host erythrocyte. Protein MDV-1/PEG3, like its Plasmodium falciparum orthologue , is present in gametocytes of both sexes, but more abundant in the female, where it is associated with dense granular organelles, the osmiophilic bodies. Δ mdv-1/peg3 parasites in which MDV-1/PEG3 production was abolished by gene disruption had a strongly reduced capacity to form zygotes resulting from a reduced capability of both the male and female gametes to disrupt the surrounding parasitophorous vacuole and to egress from the host erythrocyte. These data demonstrate that emergence from the host cell of male and female gametes relies on a common, MDV-1/PEG3-dependent mechanism that is distinct from mechanisms used by asexual parasites.  相似文献   

7.
Several protozoan parasites evade the host's immune defence because most of their development takes place inside specific host cells. Only a few of these protozoa live within the host cell cytosol. Most parasites are sequestered within membrane-bound compartments, collectively called ‘vacuoles’. Recent advances in the cell biology of intracellular parasites have revealed fundamental differences in the strategies whereby such organisms gain entry into their respective host cells. These differences have important implications for host-parasite interaction and for nutrient acquisition by the parasite. Leishmania spp. take advantage of the phagocytic properties of their host cells and presumably contribute little to the uptake process. In contrast, apicomplexan parasites have developed highly specialised organelles, called micronemes and rhoptries, to actively invade a variety of nucleated cells and, in the case of Plasmodium falciparum, human erythrocytes. Following invasion, parasites use a multitude of strategies to protect themselves from the defence mechanisms of the parasitized cells. In addition, they induce novel pathways within the infected cell that allow a most efficient nutrient acquisition both from the host cell cytoplasm and from the extracellular environment. Parasite-induced changes of host cells are most apparent in erythrocytes infected with Plasmodium spp. Mammalian erythrocytes are deficient in de novo protein and lipid biosynthesis and, consequently, pathways which allow the transport of macromolecules and small solutes are established by metabolic activities of the parasite. Research into the cell biology of intracellular parasitism has identified fascinating phenomena some of which we are beginning to understand at a molecular level. They are fascinating because they allow insights into a very intimate interaction between two eukaryotic cells of entirely different phylogenetic origins.  相似文献   

8.
Many factors contribute to the success of a socially parasitic strategy, especially the ability of the parasite to invade a host colony. However, little research has focused on the choices that may be made by an invading parasite, specifically whether parasites actively discriminate between different host colonies and if they have a preference for colonies of a particular size. When an allodapine social parasite, Inquilina schwarzi, was presented with colonies of their host species, Exoneura robusta, the parasites were found to invade the larger host colonies. However, it could not be ascertained from this study whether the parasites were making an active decision concerning which colony to invade, or whether they were simply more attracted to the larger colonies due to potentially stronger odour cues. Regardless of the cause, the larger host colonies are more at risk of being invaded by a social parasite, which would give parasites greater resources for exploitation and could also provide selection against the large host colony sizes.  相似文献   

9.
The economic importance of bovine theilerioses has prompted several new approaches to understanding the diseases in the hope of developing more efficient methods of control. Most Theileria species that infect cattle cause a lymphoproli ferative disease. Sporozoites, injected into the host bloodstream by the tick vectors, rapidly invade host lymphocytes and stimulate rapid division of infected cells. As these rupture, merozoites are released which invade red blood cells ready to infect feeding ticks again. The process by which Theileria parasites can control host lymphocytes, and induce them to divide in synchrony with the parasites themselves, is poorly understood but seems to be the key to pathogenesis. In this article, Michael Dyer and Andrew Tait discuss the possible mechanisms of cellular control in the light of recent work revealing sequences homologous to oncogenes in the DNA of T. annulata.  相似文献   

10.
The phylum Apicomplexa includes parasites responsible for global scourges such as malaria, cryptosporidiosis, and toxoplasmosis. Parasites in this phylum reproduce inside the cells of their hosts, making invasion of host cells an essential step of their life cycle. Characterizing the stages of host-cell invasion, has traditionally involved tedious microscopic observations of individual parasites over time. As an alternative, we introduce the use of compartment models for interpreting data collected from snapshots of synchronized populations of invading parasites. Parameters of the model are estimated via a maximum negative log-likelihood principle. Estimated parameter values and their 95% confidence intervals (95% CI), are consistent with reported observations of individual parasites. For RH strain parasites, our model yields that: (1) penetration of the host-cell plasma membrane takes 26s (95% CI: 22-30s); (2) parasites that ultimately invade, remain attached three times longer than parasites that eventually detach from the host cells, and (3) 25% (95% CI: 19-33%) of parasites invade while 75% (95% CI: 67-81%) eventually detach from their host cells without progressing to invasion. A key feature of the model is the incorporation of invasion stages that cannot be directly observed. This allows us to characterize the phenomenon of parasite detachment from host cells. The properties of this phenomenon would be difficult to quantify without a mathematical model. We conclude that mathematical modeling provides a powerful new tool for characterizing the stages of host-cell invasion by intracellular parasites.  相似文献   

11.
Apicomplexan parasites are an ancient group of protozoan parasites that includes several significant pathogens of humans and animals. To target and invade host cells they use a unique form of actin-based motility, called gliding motility. At the centre of the molecular motor that underlies this unique mode of locomotion are short, highly dynamic actin filaments. Recent molecular work, along with the availability of completed genomes for several Apicomplexa, has highlighted unique features of parasite actin and its regulation - features that might provide new ways to block motility and, consequently, prevent infection and disease.  相似文献   

12.
During millions of years, parasites have been adapting to different environments and hosts. During this time, they have acquired different molecules and peculiar structures, some absent in other living organisms, in order to successfully invade hosts, resist immune attack, and proliferate in the hosts. Nowadays, several genome sequences and a multitude of new information have been generated for many human and animal parasites, opening new possibilities for understanding in detail how they interact with the host and cause disease. Investigations of these molecules and the associated structures, together with their functional roles, are now emerging, providing key advances in understanding pathology that could be used for developing robust strategies to selectively target the parasites without damaging the host.  相似文献   

13.
Invasion of host cells by malaria parasites: a tale of two protein families   总被引:2,自引:0,他引:2  
Malaria parasites are obligate intracellular parasites whose invasive stages select and invade the unique host cell in which they can develop with exquisite specificity and efficacy. Most studies aimed at elucidating the molecules and the mechanisms implicated in the selection and invasion processes have been conducted on the merozoite, the stage that invades erythrocytes to perpetuate the pathological cycles of parasite multiplication in the blood. Bioinformatic analysis has helped identify the members of two parasite protein families, the reticulocyte-binding protein homologues (RBL) and erythrocyte binding like (EBL), in recently sequenced genomes of different Plasmodium species. In this article we review data from classical studies and gene disruption experiments that are helping to illuminate the role of these proteins in the selection-invasion processes. The manner in which subsets of proteins from each of the families act in concert suggests a model to explain the ability of the parasites to use alternate pathways of invasion. Future perspectives and implications are discussed.  相似文献   

14.
SYNOPSIS. Adenosine triphosphate (ATP) with pyruvate, or adenosine diphosphate with phosphoenolpyruvate, favor the development of Plasmodium lophurae removed from its host erythrocytes and kept extracellularly in vitro. It seemed possible that the parasites might be deficient in enzymes of the glycolytic cycle concerned with the generation of ATP. The ATP content of duck erythrocytes infected with P. lophurae was lower than that of uninfected cells. Infected erythrocytes, however, had somewhat higher contents of both pyruvic kinase and phosphoglyceric kinase than did uninfected ones. Both of these enzymes could be found in the free parasites. Furthermore, the pyruvic kinase of the free parasites was inactivated by freezing and thawing, whereas that of the host erythrocyte was not affected. It will be necessary, therefore, to look further for the basis for the favorable effect of ATP with pyruvate on parasites developing extracellularly in vitro.  相似文献   

15.
Lisk G  Desai SA 《Eukaryotic cell》2005,4(12):2153-2159
The plasmodial surface anion channel (PSAC), a novel ion channel induced on human erythrocytes infected with Plasmodium falciparum, mediates increased permeability to nutrients and presumably supports intracellular parasite growth. Isotope flux studies indicate that other malaria parasites also increase the permeability of their host erythrocytes, but the precise mechanisms are unknown. Channels similar to PSAC or alternative mechanisms, such as the upregulation of endogenous host transporters, might fulfill parasite nutrient demands. Here we evaluated these possibilities with rhesus monkey erythrocytes infected with Plasmodium knowlesi, a parasite phylogenetically distant from P. falciparum. Tracer flux and osmotic fragility studies revealed dramatically increased permeabilities paralleling changes seen after P. falciparum infection. Patch-clamp of P. knowlesi-infected rhesus erythrocytes revealed an anion channel with striking similarities to PSAC: its conductance, voltage-dependent gating, pharmacology, selectivity, and copy number per infected cell were nearly identical. Our findings implicate a family of unusual anion channels highly conserved on erythrocytes infected with various malaria parasites. Together with PSAC's exposed location on the host cell surface and its central role in transport changes after infection, this conservation supports development of antimalarial drugs against the PSAC family.  相似文献   

16.
The complex life cycle of plasmodial parasites makes the selection of a single subunit protein a less than optimal strategy to generate an efficient vaccinal protection against malaria. Moreover, the full protection afforded by malarial proteins carried by intact parasites implies that immune responses against different antigens expressed in different phases of the cycle are required, but also suggests that native malarial antigens are presented to the host immune system in a manner that recombinant proteins do not achieve. The malarial apical membrane antigen 1 (AMA1) represents a suitable vaccine candidate because AMA1 is expressed on sporozoites and merozoites and allows them to invade hepatocytes and erythrocytes, respectively. Anti-AMA1 antibodies and cytotoxic T-cells are therefore expected to interfere both with the primary invasion of hepatocytes by sporozoites and with the later propagation of merozoites in erythrocytes, and thus efficiently counteract parasite development in its human host. AMA1 bears potential glycosylation sites and the human erythrocytic O-linked N-acetylglucosamine transferase (OGT) could glycosylate AMA1 through combinatorial metabolism. This hypothesis was tested in silico by developing binding models of AMA1 with human OGT complexed with UDP-GlcNc, and followed by the binding of O-GlcNAc with the hydroxyl group of AMA1 serine and threonine residues. Our results suggests that AMA1 shows potential for glycosylation at Thr517 and Ser498 and that O-GlcNAc AMA1 may constitute a conformationally more appropriate antigen for developing a protective anti-malarial immune response.  相似文献   

17.
Taking the Myc is bad for Theileria   总被引:1,自引:0,他引:1  
It is commonly acknowledged that intracellular parasites manipulate the survival pathways of the host cells to their own ends. Theileria are masters of this because they invade bovine leukocytes and immortalize them. Host-cell survival depends on the presence of live parasites, and parasite death results in the leukocyte undergoing programmed cell death. The parasite, therefore, activates several anti-apoptotic pathways in host cells to ensure its own survival. In B cells that are infected by Theileria parva, one of the main mechanisms involves the induction of c-Myc and the subsequent activation of the anti-apoptotic protein Mcl-1. Activation of Myc might occur in other types of leukocyte that are infected by Theileria and in other host cells that are infected with different parasites.  相似文献   

18.
Apicomplexan parasites generally invade their host cells by anchoring the parasite to the host membrane through a structure called the moving junction (MJ). This MJ is also believed to sieve host proteins from the nascent parasitophorous vacuole membrane, which likely protects the pathogen from lysosomal destruction. Previously identified constituents of the Toxoplasma MJ have orthologues in Plasmodium , indicating a conserved structure throughout the Apicomplexa. We report here two novel MJ proteins, RON5 and RON8. While RON5 is conserved in Plasmodium , RON8 appears restricted to the coccidia. RON8, which is likely essential, co-immunoprecipitates RON5 and known MJ proteins from extracellular parasites, indicating that a preformed complex exists within the parasites. Upon secretion, we show that RON8 within the MJ localizes to the cytoplasmic face of the host plasma membrane. To examine interactions between RON8 and the host cell, we expressed RON8 in mammalian cells and show that it targets to its site of action at the periphery in a manner dependent on the C-terminal portion of the protein. The discovery of RON5 and RON8 provides new insight into conserved and unique elements of the MJ, furthering our understanding of how the MJ contributes to the intricate mechanism of Apicomplexan invasion.  相似文献   

19.
Transmission of haemospororin parasites (phylum Apicomplexa) needs the fertilization of at least one female by one male gamete within the bloodmeal of a suitable vector. Male and female gamete precursors (gametocytes) in Plasmodium and Haemoproteus parasites are normally alone inside the erythrocytes of the vertebrate host, but they also occur in male-female pairs in single erythrocytes. These paired gametocytes could enhance transmission success by facilitating the encounter between the female and male gametes when inside the midgut of the vector. Further study of these particular infections could provide new insights into the biology of and control strategies for haemospororin parasites.  相似文献   

20.
Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号