首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic fields from overhead power lines and other electromagnetic sources were determined at the birth and diagnosis dwellings of all tumor cases reported in the county of Stockholm during the years 1958-73 for individuals 0-18 years of age. The study was limited to 716 cases having a permanent address in the county both at time of birth and diagnosis. An equivalent number of controls was matched to the cases according to church district of birth, age, and sex. Outside each dwelling, the occurrence of visible electrical constructions (6-200-kV high-voltage wires, substations, transformers, electric railroads, and subways) within 150 m of the dwelling was noted. Also, the 50-Hz magnetic field was measured outside the main entrance of the dwelling. Visible 200-kv wires were noted at 45 of 2,098 dwellings and were found twice as frequently among cases as among controls (P less than .05). The magnetic field measured at the dwelling varied between 0.0004 to 1.9 microT (mean value 0.069 microT). The magnetic field was higher (0.22 microT) at dwellings with visible 200-kV wires than at those without such wires. Magnetic fields of 0.3 microT or more were measured at 48 dwellings, and were found twice as frequently among cases as among controls (P less than .05). The difference was most pronounced for dwellings of nervous system tumors and was less for leukemias.  相似文献   

2.
A commercially available spreadsheet program is used on a microcomputer to calculate the electric field/current density distributions induced in irregularly shaped, inhomogeneous objects by low-frequency magnetic fields. A finite-difference method is applied to an impedance grid that represents the object being modeled. This approach is validated by comparison with 1) the analytical results of an eccentric cylinder model and 2) measurements made on a square dish containing a saline solution and square, insulating inclusions. Application of the method is also made to a culture dish with a layer of sediment exposed to a horizontal magnetic field. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The occupational exposure to electric and magnetic fields during various work tasks at seven 110 kV substations in Finland's Tampere region was studied. The aim was to investigate if the action values (10 kV/m for the E‐field and 500 µT for the B‐field) of the EU Directive 2004/40/EC were exceeded. Electric and magnetic fields were measured during the following work tasks: (1) walking or operating devices on the ground; (2) working from a service platform; (3) working around the power transformer on the ground or using a ladder; and (4) changing a bulb from a man hoist. In work task 2 “working from a service platform” the measured electric field (maximum value 16.6 kV/m) exceeded 10 kV/m in three cases. In the future it is important to study if the limit value (10 mA/m2) of Directive 2004/40/EC is exceeded at 110 kV substations. The occupational 500 µT action value of the magnetic flux density field (B‐field) was not exceeded in any working situation. Bioelectromagnetics 31:252–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Electric fields induced in a conductive body by the magnetic field of a current-carrying wire were analyzed theoretically and experimentally to assess the dosimetric importance of highly nonuniform, field-exposure conditions. Experimentation revealed that a 60-Hz magnetic field was inversely proportional to the radius of a wire bundle carrying 100 A within a 0.5-m2 test area. A miniaturized electric field probe was used to measure the electric fields induced in 5-cm-deep, saline-filled models. In the theoretical analysis, numerical estimates of induced fields were made by a spreadsheet method. The theoretical calculations and the measured values of induced electric fields were generally in good agreement. The induced fields were in a plane perpendicular to a vertically incident magnetic field; the maximally induced fields were in areas nearest the wire bundle. The strength of the induced field increased with model size: from 96 microV/cm in a 10 x 10 cm model to 176 microV/cm in a 40 x 40 cm model. The strength of the field induced in a 20 x 20 cm model decreased with increasing model-to-wire spacing: from 132 microV/cm for a 1-cm spacing (2-mT maximum, incident field) to 50 microV/cm for a 6-cm spacing (0.33-mT maximum). The results indicate that increases in local values of nonuniformly incident fields produce relatively small increases in induced electric fields. This finding may be important in dosimetric consideration of circumstances, such as use of electric blankets, in which fields of low average strength are accompanied by intense local fields.  相似文献   

5.
Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY) has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 μT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cryb and cryOUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system for CRY-dependent magnetic sensitivity. Furthermore, given that CRY occurs in multiple tissues of Drosophila, including those potentially implicated in fly orientation, future studies may yield insights that could be applicable to the magnetic compass of migratory birds and even to potential magnetic field effects in humans.  相似文献   

6.
White-footed mice, Peromyscus leucopus, were exposed to 60-Hz electric fields to study the relationship between field strength and three measures of the transient arousal response previously reported to occur with exposures at 100 kV/m. Five groups of 12 mice each were given a series of four 1-h exposures, separated by an hour, with each group exposed at one of the following field strengths: 75, 50, 35, 25, and 10 kV/m; 8 additional mice were sham-exposed with no voltage applied to the field generator. All mice were experimentally naive before the start of the experiment, and all exposures occurred during the inactive (lights-on) phase of the circadian cycle. The first exposure produced immediate increases in arousal measures, but subsequent exposures had no significant effect on any measure. These arousal responses were defined by significant increases of gross motor activity, carbon dioxide production, and oxygen consumption, and were frequently recorded with field strengths of 50 kV/m or higher. Significant arousal responses rarely occurred with exposures at lower field strengths. Responses of mice exposed at 75 and 50 kV/m were similar to previously described transient arousal responses in mice exposed to 100-kV/m electric fields. Less than half of the mice in each of the field strength groups below 50 kV/m showed arousal responses based on Z (standard) scores, but the arousals of the mice that did respond were similar to those of mice exposed at higher field strengths. Polynomial regression was used to calculate the field strength producing the greatest increases for each of the arousal measures. The results show that the amplitude of the transient arousal response is related to the strength of the electric field, but different measures of arousal may have different relationships to field strength.  相似文献   

7.
Magnetic responses of superparamagnetic nanoparticles to high-frequency AC magnetic fields with sufficiently large amplitudes are numerically simulated to exactly clarify the phenomena occurring in magnetic particle imaging. When the magnetic anisotropy energy inevitable in actual nanoparticles is taken into account in considering the magnetic potential, larger nanoparticles exhibit a delayed response to alternations of the magnetic fields. This kind of delay is rather remarkable in the lower-amplitude range of the field, where the assistance by the Zeeman energy to thermally activated magnetization reversal is insufficient. In some cases, a sign inversion of the third-order harmonic response was found to occur at some specific amplitude, despite the lack in DC bias magnetic field strength. Considering the attenuation of the AC magnetic field generated in the human body, it is possible that the phases of the signals from nanoparticles deep inside the body and those near the body surface are completely different. This may lead to artifacts in the reconstructed image. Furthermore, when the magnetic/thermal torque-driven rotation of the anisotropic nanoparticles as well as the magnetic anisotropy energy are taken into account, the simulated results show that, once the easy axes are aligned toward the direction of the DC bias magnetic field, it takes time to randomize them at the field-free point. During this relaxation, the third-order harmonic response depends highly upon the history of the magnetic field. This is because non-linearity of the anhysteretic magnetization curve for the superparamagnetic nanoparticles varies with the orientations of the easy axes. This history dependence may also lead to another artifact in magnetic particle imaging, when the scanning of the field-free point is faster than the Brownian relaxations.  相似文献   

8.
We observed that particles, suspended in an electrolyte and brought into crossed magnetic and electric fields of low intensities, will deviate in the central part of the electrophoresis chamber of a standard Zeiss Cytopherometer with a component vertical to both fields. The direction and magnitude, however, were sharply at variance with what would be expected by the action of the Lorentz force (EMF) on the surface of the particles. The magnitude of the deviation depends upon the magnetic and electric field strength, the ion concentration of the suspension medium and the geometry of the chamber. The movement of the particles is due to streaming of the electrolyte which is mainly caused by inhomogeneities of the electric field in the electrophoresis chamber. The magnitude of the effect is high enough to occur physiological conditions. Magneto-electrophoretic streaming might eventually act as a transducer mechanism which could explain the ability of some animals to orientate themselves in the geomagnetic field.  相似文献   

9.
10.
The feasibility of magnetic field perturbations as a tool for controlling enzyme-regulated and oscillatory biochemical reactions is studied. Our approach is based on recent experimental results that revealed magnetic field effects on the in vitro activity of enzyme systems in accordance with the radical pair mechanism. A minimum model consisting of two coupled enzyme-regulated reactions is discussed that combines, in a self-consistent manner, magnetic field-sensitive enzyme kinetics with non-linear dynamical principles. Furthermore, a simple detector mechanism is described that is capable of responding to an oscillatory input. Results reveal that moderate-strength magnetic fields (B=1-100 mT) may effectively alter the dynamics of the system. In particular, a response behavior is observed that depends on: (1) the combination of static and time-varying magnetic fields; (2) the field amplitude; and (3) the field frequency in a non-linear fashion. The specific response behavior is critically determined by the biochemical boundary conditions as defined by the kinetic properties of the system. We propose an experimental implementation of the results based on the oscillatory peroxidase-oxidase reaction controlled by the enzyme horseradish peroxidase.  相似文献   

11.
We observed that particles, suspended in an electrolyte and brought into crossed magnetic and electric fields of low intensities, will deviate in the central part of the electrophoresis chamber of a standard Zeiss Cytopherometer with a component vertical to both fields. The direction and magnitude, however, were sharply at variance with what would be expected by the action of the Lorentz force (EMF) on the surface of the particles. The magnitude of the deviation depends upon the magnetic and electric field strength, the ion concentration of the suspension medium and the geometry of the chamber. The movement of the particles is due to streaming of the electrolyte which is mainly caused by inhomogeneities of the electric field in the electrophoresis chamber. The magnitude of the effect is high enough to occur under physiological conditions. Magneto-electrophoretic streaming might eventually act as a transducer mechanism which could explain the ability of some animals to orientate themselves in the geomagnetic field.  相似文献   

12.
We have previously demonstrated that a weak, extremely-low-frequency magnetic field must be coherent for some minimum length of time (≈? 10 s) in order to affect the specific activity of ornithine decarboxylase (ODC) in L929 mouse cells. In this study we explore whether or not the superposition of an incoherent (noise) magnetic field can block the bioeffect of a coherent 60 Hz magnetic field, since the sum of the two fields is incoherent. An experimental test of this idea was conducted using as a biological marker the twofold enhancement of ODC activity found in L929 murine cells after exposure to a 60 Hz, 10 μTrms magnetic field. We superimposed an incoherent magnetic noise field, containing frequencies from 30 to 90 Hz, whose rms amplitude was comparable to that of the 60 Hz field. Under these conditions the ODC activity observed after exposure was equal to control levels. It is concluded that the superposition of incoherent magnetic fields can block the enhancement of ODC activity by a coherent magnetic field if the strength of the incoherent field is equal to or greater than that of the coherent field. When the superimposed, incoherent noise field was reduced in strength, the enhancement of ODC activity by the coherent field increased. Full ODC enhancement was obtained when the rms value of the applied EM noise was less than one-tenth that of the coherent field. These results are discussed in relation to the question of cellular detection of weak EM fields in the presence of endogenous thermal noise fields. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Choosing the right exposure index for epidemiological studies on 50–60 Hz magnetic fields is difficult due to the lack of knowledge about critical exposure parameters for the biological effects of magnetic fields. This paper uses data from a previously published epidemiological investigation on early pregnancy loss (EPL) to study the methods of evaluating the exposure-response relationship of 50 Hz magnetic fields. Two approaches were used. The first approach was to apply generalized additive modeling to suggest the functional form of the relationship between EPL and magnetic field strength. The second approach evaluated the goodness of fit of the EPL data with eight alternative exposure indices: the 24 h average of magnetic field strength, three indices measuring the proportion of time above specified thresholds, and four indices measuring the proportion of time within specified intensity windows. Because the original exposure data included only spot measurements, estimates for the selected exposure indices were calculated indirectly from the spot measurements using empirical nonlinear equations derived from 24 h recordings in 60 residences. The results did not support intensity windows, and a threshold-type dependence on field strength appeared to be more plausible than a linear relationship. In addition, the study produced data suggesting that spot measurements may be used as surrogates for other exposure indices besides the time average field strength. No final conclusions should be drawn from this study alone, but we hope that this exercise stimulates evaluation of alternative exposure indices in other planned and ongoing epidemiological studies. © 1996 Wiley-Liss, Inc.  相似文献   

14.
15.
We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents.  相似文献   

16.
The present study deals with the analgesic effect induced by static magnetic fields (SMF) in mice exposed to the field with their whole body. It discusses how the effect depends on the distribution of the magnetic field, that is, on the specification and arrangement of the applied individual permanent magnets. A critical analysis of different magnet arrangements is given. As a result the authors propose a magnet arrangement recipe that achieves an analgesic effect of over 80% in the writhing test. This is a widely accepted screening method for animal pain and predictor of human experimental results. As a non-drug, non-invasive, non-contact, non-pain, non-addictive method for analgesia with immediate and long-lasting effect based on the stimulus of the endogenous opioid network, the SMF treatment may attract the attention of medical doctors, nurses, magnet therapists, veterinarians, physiotherapists, masseurs, and fitness trainers among others.  相似文献   

17.
Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
The production of ATP in mitochondria depends on the magnesium nuclear spin and magnetic moment of a Mg2+ ion in creatine kinase and ATPase. This suggests that enzymatic synthesis of ATP is an ion-radical process and thus depends on the external magnetic field (magnetobiology originates from this fact) and microwave fields, which control the spin states of ion-radical pairs and affect the ATP synthesis. The chemical mechanism of ATP synthesis and the origin of biological effects of electromagnetic (microwave) fields are discussed.  相似文献   

19.
Many in vitro experiments on the biological effects of extremely low frequency (ELF) electromagnetic fields utilize a uniform external magnetic flux density (B) to expose biological materials. A significant number of researchers do not measure or estimate the resulting electric field strength (E) or current density (J) in the sample medium. The magnitude and spatial distribution of the induced E field are highly dependent on the sample geometry and its relative orientation with respect to the magnetic field. We have studied the E fields induced in several of the most frequently used laboratory culture dishes and flasks under various exposure conditions. Measurements and calculations of the E field distributions in the aqueous sample volume in the containers were performed, and a set of simple, quantitative tables was developed. These tables allow a biological researcher to determine, in a straightforward fashion, the magnitudes and distributions of the electric fields that are induced in the aqueous sample when it is subjected to a uniform, sinusoidal magnetic field of known strength and frequency. In addition, we present a novel exposure technique based on a standard organ culture dish containing two circular, concentric annular rings. Exposure of the organ culture dish to a uniform magnetic field induces different average electric fields in the liquid medium in the inner and outer rings. Results of experiments with this system, which were reported in a separate paper, have shown the dominant role of the magnetically induced E field in producing specific biological effects on cells, in vitro. These results emphasize the need to report data about the induced E field in ELF in-vitro studies, involving magnetic field exposures. Our data tables on E and J in standard containers provide simple means to enable determination of these parameters.  相似文献   

20.
Mechanisms to explain disturbance of honey bee colonies under a 765-kV, 60-Hz transmission line [electric (E) field = 7 kV/m] fall into two categories: direct bee perception of enhanced in-hive E fields, and perception of shock from induced currents. The same adverse biological effects previously observed in honey bee colonies exposed under a 765-kV transmission line can be reproduced by exposing worker bees to shock or E field within elongated hive entranceways (= tunnels). Exposure to intense E field caused disturbance only if bees were in contact with a conductive substrate. E-field and shock exposure can be separated and precisely defined within tunnels, eliminating dosimetric vagaries that occur when entire hives are exposed to E field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号