首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Antigenic polymorphism of the class I-like maternally transmitted antigen (Mta) is controlled by a maternally transmitted factor (Mtf) thought to reside in mitochondria. However, the mechanisms by which Mtf generates antigenic polymorphism are not known. To address this issue, we investigated a possible role of post-translational oligosaccharide addition in the formation of Mta determinants. We examined the expression of Mta on cytotoxic T lymphocyte (CTL) target cells cultured in tunicamycin (TM), a known inhibitor of asparagine(N)-linked glycosylation. Of 18 Mtab-specific CTL lines, 8 lysed TM-treated Mtaa targets. Furthermore, a subclone of one of these eight lines, 17D5.G2, lysed TM-treated targets from all Mtaa strains tested, regardless of H-2K/D haplotype. On the other hand, this CTL clone did not lyse TM-treated target cells from the Mta null, but H-2 expressing strain B10. CAS2. Therefore expression of this Mtab-like determinant is concordant with the expression of Mtaa and seems unlikely to represent a cross-reactive H-2K/D epitope. Our data suggest that an Mtab-like determinant is expressed on unglycosylated Mtaa molecules. Thus, N-linked oligosaccharides probably prevent the expression of an Mtab-like determinant on the Mtaa molecule. We discuss how Mtf may contribute to Mta polymorphism through glycosylation.Abbreviations used in this paper CAB Con A blast - CML cell-mediated lympholysis - Con A concanavalin A - CTL cytotoxic T lymphocyte - DMEM Dulbecco's modified minimum essential medium - FCS fetal calf serum - IL-2 interleukin-2 - LPS lipopolysaccharide - mAb monoclonal antibody - MLC mixed leukocyte culture - mMDM modified Mishell-Dutton medium - Mta maternally transmitted antigen - NK natural killer - sMDM supplemented Mishell-Dutton medium - TM tunicamycin - 2m beta-2 microglobulin  相似文献   

2.
Wickner RB  Leibowitz MJ 《Genetics》1977,87(3):453-469
Yeast strains carrying a double-stranded RNA plasmid of 1.4–1.7 x 106 daltons encapsulated in virus-like particles secrete a toxin that kills strains lacking this plasmid. The plasmid requires at least 24 chromosomal genes (pets, and mak1 through mak23) for its replication or maintenance. We have detected dominant Mendelian mutations (called KRB1 for killer replication bypass) that bypass two chromosomal genes, mak7 and pets, normally needed for plasmid replication. Strains mutant in mak7 and carrying the bypass mutation (mak7–1 KRB1) are isolated as frequent K+R+ sectors of predominantly K-R - segregants from crosses of mak7–1 with a wild-type killer. All KRB1 mutations isolated in this way are inherited as single dominant centromere-linked chromosomal changes. They define a new centromere. KRB1 is not a translational suppressor. KRB1 strains contain a genetically normal killer plasmid and ds RNA species approximately the same in size and amount as do wild-type killers. Bypass of both mak7 and pets by one mutation suggests that these two genes are functionally related.

Two properties of the inheritance of KRB1 indicate an unusually high reversion frequency: (1) Heat or cycloheximide (treatments known to cure strains of the wild-type killer plasmid) readily induce conversion of mak7–1 KRB1 strains from killers to nonkillers with concomitant disappearance of KRB1 as judged by further crosses, and (2) mating two strains of the type mak7–1 KRB1 with each other yields mostly 2 K+R+: 2 K-R- segregation, although the same KRB1 mutation and the same killer plasmid are present in both parents.

  相似文献   

3.
Reed B. Wickner 《Genetics》1976,82(2):273-285
Mutants of the killer plasmid of Saccharomyecs cerevisiae have been isolated that depend upon chromosomal diploidy for the expression of plasmid functions and for replication or maintenance of the plasmid itself. These mutants are not defective in any chromosomal gene needed for expression or replication of the killer plasmid.—Haploids carrying these mutant plasmids (called d for diploid-dependent) are either unable to kill or unable to resist being killed or both and show frequent loss of the plasmid. The wild-type phenotype (K+R+) is restored by mating the d plasmid-carrying strain with either (a) a wild-type sensitive strain which apparently has no killer plasmid; (b) a strain which has been cured of the killer plasmid by growth at elevated temperature; (c) a strain which has been cured of the plasmid by growth in the presence of cycloheximide; (d) a strain which has lost the plasmid because it carries a mutation in a chromosomal mak gene; or (e) a strain of the opposite mating type which carries the same d plasmid and has the same defective phenotype, indicating that the restoration of the normal phenotype is not due to recombination between plasmid genomes or complementation of plasmid or chromosomal genes.—Sporulation of the phenotypically K+R+ diploids formed in matings between d and wild-type nonkiller strains yields tetrads, all four of whose haploid spores are defective for killing or resistance or maintenance of the plasmid or a combination of these. Every defective phenotype may be found among the segregants of a single diploid clone carrying a d plasmid. These defective segregants resume the normal killer phenotype in the diploids formed when a second round of mating is performed, and the segregants from a second round of meiosis and sporulation are again defective.  相似文献   

4.
T‐cell receptor (TCR)‐transgenic mice have been employed for evaluating antigen‐response mechanisms, but their non‐endogenous TCR might induce immune response differently than the physiologically expressed TCR. Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen‐specific CD4+ T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre‐rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic‐type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter‐regulated antigen‐specific TCR are a unique animal model with allergic predisposition for investigating CD4+ T‐cell‐mediated pathogenesis and cellular commitment in immune diseases.  相似文献   

5.
The killer character of yeast is determined by a 1.4 x 106 molecular weight double-stranded RNA plasmid and at least 12 chromosomal genes. Wild-type strains of yeast that carry this plasmid (killers) secrete a toxin which is lethal only to strains not carrying this plasmid (sensitives). ——— We have isolated 28 independent recessive chromosomal mutants of a killer strain that have lost the ability to secrete an active toxin but remain resistant to the effects of the toxin and continue to carry the complete cytoplasmic killer genome. These mutants define two complementation groups, kex1 and kex2. Kex1 is located on chromosome VII between ade5 and lys5. Kex2 is located on chromosome XIV, but it does not show meiotic linkage to any gene previously located on this chromosome. ——— When the killer plasmid of kex1 or kex2 strains is eliminated by curing with heat or cycloheximide, the strains become sensitive to killing. The mutant phenotype reappears among the meiotic segregants in a cross with a normal killer. Thus, the kex phenotype does not require an alteration of the killer plasmid. ——— Kex1 and kex2 strains each contain near-normal levels of the 1.4 x 106 molecular weight double-stranded RNA, whose presence is correlated with the presence of the killer genome.  相似文献   

6.
Murine noroviruses are a recently discovered group of viruses found within mouse research colonies in many animal facilities worldwide. In this study, we used 2 novel mouse norovirus (MNV) wildtype isolates to examine the kinetics of transmission and tissue distribution in breeding units of NOD.CB17-Prkdcscid/J and backcrossed NOD.CB17-Prkdcscid/J × NOD/ShiLtJ (N1) mice. Viral shedding in feces and dissemination to tissues of infected offspring mice were monitored by RT-PCR over a 6-wk period postpartum. Histologic sections of tissues from mice exposed to MNV were examined for lesions and their sera monitored for the presence of antibodies to MNV. Viruses shed in feces of parental and offspring mice were compared for sequence homology of the Orf2 gene. Studies showed that the wildtype viruses MNV5 and MNV6 behaved differently in terms of the kinetics of transmission and distribution to tissues of offspring mice. For MNV5, virus transmission from parents to offspring was not seen before 3 wk after birth, and neither isolate was transmitted between cages of infected and control mice. Susceptibility to infection was statistically different between the 2 mouse strains used in the study. Both immunodeficient NOD.CB17-Prkdcscid/J mice and NOD.CB17-Prkdcscid/J × NOD/ShiLtJ offspring capable of mounting an immune response shed virus in their feces throughout the 6-wk study period, but no gross or histologic lesions were present in infected tissues. Progeny viruses isolated from the feces of infected offspring showed numerous mutations in the Orf2 gene for MNV5 but not MNV6. These results confirm previous studies demonstrating that the biology of MNV in mice varies substantially with each virus isolate and mouse strain infected.Abbreviations: MNV, murine norovirus; MLN, mesenteric lymph nodes; NOD-scid, NOD.CB17-Prkdcscid/J; VP1, viral protein 1The recent discovery of murine-specific noroviruses15 has stimulated concern in the laboratory animal health community regarding the potential for this group of viruses to cause disease in breeding colonies of mice or to negatively impact research with mice from norovirus infected colonies. Current knowledge of the biology of noroviruses in mice (MNV) is constrained by the limited number of virus isolates and mouse strains studied. One study15described the biologic and physicochemical properties of the original MNV1 isolated from mice deficient in a specific innate immune function. More recently, this innate immune deficiency has been mapped to STAT1 regulation of IFNαβ secretion.21Previous work15 demonstrated that inoculation of MNV1 into mouse strains deficient in the acquired immune response (129 RAG 2−/−, B6 RAG1−/−) resulted in the development of persistent infections with no evidence of disease, whereas inoculation of fully immunocompetent mice (129S6/SvEvTac) resulted in rapid elimination of MNV1, with viral RNA undetectable in the viscera by 3 d after inoculation. More recently, infections of outbred immunocompetent mouse strains with 3 wildtype isolates of MNV obtained from different geographic areas of the United States have been described.11 Virus was detected in the feces and tissue of infected mice throughout the 8-wk study, suggesting that some isolates of MNV may persistently infect immunocompetent mice.The purpose of the present investigation was to extend the current knowledge of MNV by using 2 isolates of the virus in mouse strains that have not been previously used as infection models for MNV. We examined natural virus transmission from infected breeders to offspring, kinetics of infection within litters of infected breeding mice, and the pathogenesis of infection in breeding colonies of mice. In addition, we examined the effect of virus passage from parents to offspring on genomic stability of these 2 viral isolates. Exposure of offspring of immunodeficient mice and immunocompetent mice to the 2 different isolates of MNV resulted in different patterns of virus transmission, susceptibility to infection and kinetics of infection as shown by the progressive spread of virus within litters and in intestinal and extraintestinal tissues. MNV was shed persistently in the feces of all mice tested regardless of immune status, and viral progeny isolated from offspring mice contained genome sequence differences from the parent virus in the Orf2 gene, an area of the MNV genome known to be susceptible to mutations.  相似文献   

7.
Isolation and characterization of Hfr males in Citrobacter freundii   总被引:2,自引:0,他引:2  
Citrobacter freundii Hfr donor strains were isolated from a C. freundii strain harbouring a temperature-sensitive factor F ts 114 lac +, by selecting for integrative suppression of the ts 114 mutation. Three Hfr strains were characterized, which transfer their chromosomes in a linear and oriented order. The first strain transfers: O-aro +-ilv +-pur +-thr +-leu +-pro +, the second: O-ilv +-pur +-thr +-leu +-pro + and the third: O-ilv +-aro +-nad +-his +-pro +. The whole chromosome is transferred into the recipient cell within about 145 minutes. From these results we concluded that the linkage map of C. freundii is circular. Mating-pair formation on a membrane filter resulted in more recombinants being formed as compared with mating-pair formation in liquid medium. Furthermore the mating-pairs formed on a membrane were more stable. From one Hfr strain heterogenic F-prime factors could be isolated bearing the F ts 114 lac + genes from Escherichia coli and the pur + and/or ilv + genes from C. freundii. Preliminary mapping by interrupted mating indicated that the linkage map of C. freundii is in general very similar to those of E. coli, Salmonella typhimurium and Klebsiella aerogenes.  相似文献   

8.
In mammalian cells, POLQ (pol θ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. POLQ has been implicated by different experiments to play a role in resistance to ionizing radiation and defense against genomic instability, in base excision repair, and in immunological diversification. The protein is formed by an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which functions in resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in multicellular eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies defective in Mus308 are sensitive to DNA interstrand crosslinking agents, while mammalian cells defective in POLQ are primarily sensitive to DNA double-strand breaking agents. Cells from Polq?/? mice are hypersensitive to radiation and peripheral blood cells display increased spontaneous and ionizing radiation-induced levels of micronuclei (a hallmark of gross chromosomal aberrations), though mice apparently develop normally. Loss of POLQ in human and mouse cells causes sensitivity to ionizing radiation and other double strand breaking agents and increased DNA damage signaling. Retrospective studies of clinical samples show that higher levels of POLQ gene expression in breast and colorectal cancer are correlated with poorer outcomes for patients. A clear understanding of the mechanism of action and physiologic function of POLQ in the cell is likely to bear clinical relevance.  相似文献   

9.
 The occurrence of killer toxins amongst yeasts in Brazilian Riesling Italico grape must was investigated by using the sensitive strain EMBRAPA-26B as a reference strain at 18°C and 28°C. From a total of 85 previously isolated yeasts, 21 strains showed ability to kill the sensitive strain on unbuffered grape must/agar (MA-MB) and 0.1 M citrate/phosphate-buffered yeast extract/peptone/dextrose/agar (YEPD-MB) media both supplemented with 30 mg/l methylene blue. The killer activity of only four yeasts depended on the incubation temperature rather than the medium used. At 28°C, the strains 11B and 53B were not able to show killer action. On the other hand, strains 49B and 84B did not kill the sensitive yeast at 18°C. The killer strain EMBRAPA-91B and a commercial wine killer yeast K-1 were employed to examine the sensitivity of the isolated yeasts on YEPD-MB and MA-MB at 18°C. The sensitivity and neutral characteristics of yeasts were shown to be dependent on the medium and the killer strain. Interactions, including K- R-, K- R+ and K+ R+ strains, simultaneously, have revealed that some K-R+ strains appear to protect the K- R- strain against the killer toxin. Sensitive dead cells, although to a less extent, also exhibited similar protection. Kinetic studies have shown that the maximum specific growth rates were higher for the 20B YEPD-MB-sensitive strain (μmax=0.517 h-1) than for both the 91B (μmax=0.428 h-1) and K-1 (μmax= 0.466 h-1) killer strains. The protective capacity of neutral or sensitive cells that contaminate a fermentation, as well as the higher maximum specific growth rate of sensitive yeasts, besides other factors, may preclude the dominance of a killer strain. This protective capacity may also reduce the risk of a sensitive inoculum being killed by wild-type killer yeasts in open non-sterile fermentation. Received: 3 November 1995/Received revision: 11 March 1996/Accepted: 15 April 1996  相似文献   

10.
Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype.  相似文献   

11.
Major virulence determinants of group A streptococci, such as M-protein, immunoglobulin Fc-receptors (FcRA, EmmL) and C5a peptidase, appear to be genetically co-regulated, their genes being located within a vir regulon. We studied the organization of these genes in a group A, type M15 strain of Streptococcus pyogenes, previously defined as OF?, by hybridization analysis of chromosomal DNA and of an S. pyogenes gene library in Escherichia coli, and by gene sequencing. Within the vir regulon, in addition to the virR and scpA genes, three so-called emm-related genes were found: fcrA, emmL and enn. Whereas IgG Fc-binding proteins were encoded by fcrA and emmL, the product of enn was not identified. The presence of three emm-related genes in this region is reminescent of vir regulon organization in OF+ rather than OF? strains as earlier defined by others. Furthermore, analysis of the deduced product of the emmL gene showed deletions and amino acid substitutions within the PGTS-rich domain and membrane anchor, which thus resembles corresponding products of OF+ rather than OF? strains. In view of these findings, the opacity factor (OF) activity of the strain was tested using growth supernatant, with negative outcome. However, a concentrated SDS cell extract revealed definite OF activity. One of two other type M15 reference strains also showed definite OF activity in SDS extracts. We therefore propose that type M15 strains belong to the OF+ category but often show low levels of expression of OF.  相似文献   

12.
Mice that lack a maternally transmitted antigen (Mta) on the cell surface share a distinctive type of mitochondrial DNA. This is evident from restriction analyses of mitochondrial DNAs from 25 strains of mice whose antigenic state is known. One hundred sixty-eight cleavage sites have been mapped in the mitochondrial DNA of Mta- mice. Detailed maps for the 8 other types of mitochondrial DNA detected in the survey have also been prepared. The Mta- mice are estimated to differ from those expressing the antigen by 108 to 141 base substitutions at widely scattered points in the mitochondrial genome.  相似文献   

13.
A trivalent liveShigella vaccine candidate FSD01 against S.flexneri 2a, S.sonnei and S.dysenteriae I was constructed. This candidate strain was based on the S.flexneri 2a vaccine T32. By homologous recombination exchange, the chromosomalasd gene of T32 was site-specifically inactivated, resulting in the strain unable to grow normally in LB broth, while anotherasd gene of S.mutans was employed to construct an Asd+ complementary vector. This combination ofasd - host/Asd+ vector formed a balanced-lethal expression system in T32 strain. By use of this system, two important protective antigen genes coding for S.sonnei Form I antigen and Shiga toxin B subunit were cloned and expressed in T32, which led to the construction of trivalent candidate vaccine FSD01. Experimental results showed that this strain was genetically stable, but its recombinant plasmid was non-resistant. Moreover, it was able to effectively express trivalent antigens in one host and induce protective responses in mice against the challenges of the above threeShigella strains.  相似文献   

14.
Immunodeficient mice are widely used for pre-clinical studies to understand various human diseases. Here, we report the generation of four immunodeficient mouse models using CRISPR/Cas9 system without inserting any foreign gene sequences such as NeoR cassettes and their characterization. By eliminating any possible effects of adding a NeoR cassette, our mouse models may allow us to better elucidate the in vivo functions of each gene. Our FVB-Rag2?/?, B6-Rag2?/?, and BALB/c-Prkdc?/? mice showed phenotypes similar to those of the earlier immunodeficient mouse models, including a lack of mature B cells and T cells and an increase in the number of CD45+DX-5+ natural killer cells. However, B6-Il2rg?/? mice had a unique phenotype, with a lack of mature B cells, increased number of T cells, and decreased number of natural killer cells. Additionally, serum immunoglobulin levels in all four immunodeficient mouse models were significantly reduced when compared to those in wild-type mice with the exception of IgM in B6-Il2rg?/? mice. These results indicate that our immunodeficient mouse models are a robust tool for in vivo studies of the immune system and will provide new insights into the variation in phenotypic outcomes resulting from different gene-targeting methodologies.  相似文献   

15.
Twenty five culture wine yeast strains from New Zealand and Australia were examined for killer capability or sensitivity. Eight yeast strains were K 2 + killers, six of the K 2 + R 1 - R 3 + phenotype and two of the K 2 + R 1 - R 3 - phenotype. The seventeen sensitive strains were separated into four phenotype classes. The homothallic life cycle was detected in twenty-one strains and one further strain is probably triploid.  相似文献   

16.
During Yersinia pseudotuberculosis infection of C57BL/6 mice, an exceptionally large CD8+ T cell response to a protective epitope in the type III secretion system effector YopE is produced. At the peak of the response, up to 50% of splenic CD8+ T cells recognize the epitope YopE69-77. The features of the interaction between pathogen and host that result in this large CD8+ T cell response are unknown. Here, we used Y. pseudotuberculosis strains defective for production, secretion and/or translocation of YopE to infect wild-type or mutant mice deficient in specific dendritic cells (DCs). Bacterial colonization of organs and translocation of YopE into spleen cells was measured, and flow cytometry and tetramer staining were used to characterize the cellular immune response. We show that the splenic YopE69-77-specific CD8+ T cells generated during the large response are polyclonal and are produced by a “translocation-dependent” pathway that requires injection of YopE into host cell cytosol. Additionally, a smaller YopE69-77-specific CD8+ T cell response (~10% of the large expansion) can be generated in a “translocation-independent” pathway in which CD8α+ DCs cross present secreted YopE. CCR2-expressing inflammatory DCs were required for the large YopE69-77-specific CD8+ T cell expansion because this response was significantly reduced in Ccr2-/- mice, YopE was translocated into inflammatory DCs in vivo, inflammatory DCs purified from infected spleens activated YopE69-77-specific CD8+ T cells ex vivo and promoted the expansion of YopE69-77-specific CD8+ T cells in infected Ccr2-/- mice after adoptive transfer. A requirement for inflammatory DCs in producing a protective CD8+ T cell response to a bacterial antigen has not previously been demonstrated. Therefore, the production of YopE69-77-specific CD8+ T cells by inflammatory DCs that are injected with YopE during Y. pseudotuberculosis infection represents a novel mechanism for generating a massive and protective adaptive immune response.  相似文献   

17.
18.
Strains of Saccharomyces cerevisiae carrying a small double-stranded RNA species (the killer plasmid) secrete a toxin which is lethal only to strains not carrying this plasmid.We have isolated mutants in eight chromosomal genes essential for replication or maintenance of the killer plasmid, called mak1 through mak8. Seven of these genes have been mapped. mak4 and mak5 are on chromosome II; mak1 and mak8 are on chromosome XV; mak3 and mak6 are on chromosome XVI; and mak7 is on chromosome VIII. We have not yet located mak2. Two other chromosomal genes, m and pets, have been shown to be required for replication or maintenance of the killer plasmid.One allele of mak1 results in temperature sensitivity for host growth. Two independent pets isolates also result in the petite phenotype, as well as temperature sensitivity for growth.Wild-type killer strains have been reported to carry two species of doublestranded RNA of 2.5 × 106 and 1.4 × 106 molecular weight (designated L and M, respectively); wild-type non-killers carried only L. We estimate the size of the L and M species at 3.0 × 106 and 1.7 × 106 daltons, respectively. We have also detected a third species of double-stranded RNA of molecular weight 3.8 × 106 (XL) present in all killer and non-killer strains examined.Mutation of any of mak1 through mak8 results in loss of the killer-associated species of double-stranded RNA (M; 1.7 × 106). These mutants retain both the L species (3.0 × 106) and the XL species (3.8 × 106) of double-stranded RNA, and have acquired two new minor RNA species.  相似文献   

19.
Background: EpCAM or CD133 has been used as the tumor initiating cells (TICs) marker in hepatocellular carcinoma (HCC). We investigated whether cells expressing with both EpCAM and CD133 surface marker were more representative for TICs in hepatocellular carcinoma Huh7 cells.Methods: Four different phenotypes of CD133+EpCAM+, CD133+EpCAM-, CD133-EpCAM+ and CD133-EpCAM- in Huh7 cells were sorted by flow cytometry. Then cell differentiation, self-renewal, drug-resistance, spheroid formation and the levels of stem cell-related genes were detected to compare the characteristics of TICs. The ability of tumorigenicity was measured in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to verify TICs.Results: CD133+EpCAM+ cells have many characteristics of TICs in Huh7 cells compared with CD133+EpCAM-, CD133-EpCAM+, CD133-EpCAM- cells, including enrichment in side population cells, higher differentiation capacity, increased colony-formation ability, preferential expression of stem cell-related genes, appearance of drug-resistant to some chemotherapeutics, more spheroid formation of culture cells and stronger tumorigenicity in NOD/SCID mice.Conclusion: CD133+EpCAM+ phenotype is precisely represented TICs in Huh7 cells. It might be useful for studying biology mechanism of TICs in hepatocellular carcinoma and screening new targets for cancer therapy.  相似文献   

20.
Summary In some respiratory deficient cytoplasmic mutants, the buoyant density of mitochondrial DNA is changed to detectable degrees, as compared to that of wild type strain: since this density shift suggests an important modification of polynucleotide sequence in mitochondrial DNA, we examined sequence homology between mitochondrial DNA of the respiratory mutants issued from cytoplasmic or chromosomal mutations. Mitochondrial DNA, nuclear DNA and total RNA were extracted from ϱ+ cells (wild type, respiratory sufficient) and from ϱ- cells (cytoplasmic “petite colonie” mutant, respiratory deficient), and molecular hybridization experiments were carried out between them. When ϱ+ RNA × ϱ+ mitochondrial DNA, formed roughly twice as much hybrids as the heterologous cross, ϱ+ RNA × ϱ1 mitochondrial DNA. Reciprocally, when ϱ- RNA was hybridized to ϱ+ and ϱ- mitochondrial DNA, the homologous cross produced again about twice as much hybrids as the heterologous cross. These results were confirmed by dehydridization-rehybridization experiments: the RNA separated from the hybrids “ϱ+ RNA × ϱ+ mit-DNA” as well as the RNA separated from the hybrids “ϱ+ RNA × ϱ- mit-DNA” were rehybridized either with ϱ+ or ϱ- mit-DNA. A preferential hybridization of ϱ+ RNA with ϱ+ mit-DNA, and of ϱ- RNA with ϱ- mit-DNA was clearly observed. On the contrary, ϱ+ and ϱ- nuclear DNA did not distinguish ϱ+ or ϱ- RNA. The same series of experiments were carried out using a chromosomal mutation,P 7 to p7, leading to the same respiratory deficient phenotype. We found that the p7 mutation did not introduce a detectable change in mitochondrial DNA base sequence. The results support the idea that the cytoplasmic hereditary factor, ϱ, resides in mitochondrial DNA and that the ϱ- mutations studied correspond to a dispersed sequence modification covering about a half of the total mitochondrial DNA genome, leaving the other half unchanged. Alternatively, the results can be explained by a hypothesis in which mitochondrial DNA is a heterogeneous population of the molecules having more or less related sequences and the mutation leads to a selection of certain molecular species. 4 S RNA was found to contain RNA species which hybridize with mitochondrial DNA. The degree of hybridization was very different for ϱ+ and ϱ- S RNA, when they were hybridized with either ϱ+ or ϱ- mitochondrial DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号