首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ribose on the pre- and post-ischaemic functional performance of the isolated working heart from 24 month old chronically alcoholic animals was investigated. The improved perfusion model permitted the isolated heart to perform work analogous to that of the normal physiological load, in a system where systemic pressure and atrial pressure could be altered over a wide range and oxygen loss from the perfusion fluid was a minimum. There was a remarkable improvement in the performance of isolated hearts taken from alcoholic animals that were perfused with 1.7 mM ribose both before and after a 25.0 min period of global myocardial ischaemia (at 25 degrees C), however ribose treatment did not greatly affect the performance of hearts of isocaloric control aged rats. Chronic alcohol consumption significantly affected heart performance, causing a marked reduction in both cardiac and work output. After ischaemia the work of all hearts was notably decreased; there was no work output in untreated hearts of alcoholic animals, whereas in hearts of alcoholic animals treated with ribose work output was only decreased by 35%. The acute response to ribose by hearts of aged chronically alcoholic animals suggests a role for this compound as a positive inotropic agent and clearly indicates the beneficial potential of ribose for inclusion in cardioplegic solutions or for infusion in alcoholic subjects showing signs of heart failure or chronic heart disease.  相似文献   

2.
X C Yu  S Wu  G Y Wang  J Shan  T M Wong  C F Chen  K T Pang 《Life sciences》2001,68(25):2863-2872
The primary purpose of the present study was to compare the cardioprotective effects of the extract from radix stephaniae tetrandrae (RST) and its individual compounds, tetrandrine (Tet) and fanchinoline (Fan). Secondly, we also compared the cardiac effects of the individual compounds and the RST extract with those of verapamil, a classical Ca2+ channel blocker. The Langendorff isolated perfused rat heart preparation was used. Regional ischaemia and reperfusion was employed to induce myocardial infarct and arrhythmia. Infarct, arrhythmia, heart rate and coronary artery flow were determined in hearts treated with vehicle, RST extract, Tet, Fan, or verapamil. It was found that RST extract, of which only 9% was Tet, and Tet alone produced equally potent ameliorating effects on arrhythmia and infarct induced by ischaemia and reperfusion without further inhibiting ischaemia-reduced heart rate and coronary artery flow. Fan had no effects on arrhythmia and infarct induced by ischaemia and reperfusion; but it induced S-T segment elevation and further reduced heart rate and coronary artery flow during ischaemia. Verapamil also ameliorated the effects of ischaemia and reperfusion on arrhythmia and infarct. It should be noted that 1 microM verapamil, that produced comparable effects on infarct and arrhythmia to the RST extract and Tet, further inhibited heart rate during ischaemia. The results indicate that the RST extract produces equally potent cardioprotective and anti-arrhythmic effects as Tet alone. Both RST extract and Tet may be better choices for the treatment of arrhythmia and infarct induced by myocardial ischaemia and reperfusion than the classical Ca2+ channel blocker, verapamil as they do not further reduce heart rate during ischaemia.  相似文献   

3.
Obese gold thioglucose injected mice were reduced to lean control weight by food restriction. When pair fed with lean controls these animals then gained weight (were metabolically more efficient). Serum glucose was also elevated in this group (14.5±0.4 (14)vs 12.1±0.3 mmol/L, p<0.001). If previously obese animals were weight maintained with lean controls (by mild food restriction), serum glucose remained at control levels. The activity of the pyruvate dehydrogenase complex in heart muscle was decreased in both obese and pair fed previously obese, whilst it was similar to that of lean controls in the weight maintained previously obese and in obese mice actually dieted. In all obese and previously obese animals serum insulin was elevated. In hearts from control animals subjected to mild food restriction the pyruvate dehydrogenase complex was activated (11.53±1.80 (5)vs 3.34±0.62 (9) U/g dry weight), despite a reduced serum insulin level (42±2vs 74±10 U/ml, p<0.01). These diverse changes in the proportion of the pyruvate dehydrogenase complex in the active form and insulin levels argue for a persistent alteration in the sensitivity of the pyruvate dehydrogenase complex to insulin in obesity, as well as indicating that glucose metabolism in obese animals is altered by both body weight and diet amount.To whom correspondence should be addressed.  相似文献   

4.
The cardiovascular responses of rats of different ages, ranging from 4-15 weeks (body weight 115-490 g), to acute left coronary artery ligation under pentobarbitone anaesthesia were studied. In older animals, the responses included the occurrence of ventricular tachycardia and/or fibrillation, decrease in blood pressure, and a slight increase in heart rate. On the contrary, younger rats exhibited atrioventricular block followed by ventricular arrest, and decreases in both blood pressure and heart rate. The findings demonstrate the existence of age-related cardiovascular responses to acute myocardial ischaemia in rats, and suggest that 10-15-week-old male Sprague-Dawley rats are suitable experimental animals for producing early ventricular arrhythmias by acute coronary artery ligation.  相似文献   

5.
S Q Wu  L M Fu  J R Koke  N Bittar 《Cytobios》1987,50(200):7-12
Provision of AMP or adenosine to heart cells during recovery from episodes of myocardial ischaemia accelerates physiological, biochemical, and structural recovery. Inhibition of adenosine loss from the tissue during ischaemia should have a similar effect. This hypothesis was tested in dog heart by infusion of adenosine and inhibitors of adenosine catabolism prior to, during, and following ischaemia. Post-ischaemic recovery of ATP and contractile function was accelerated significantly by adenosine and by inhibitors of adenosine catabolism both singly and in combination. Contractility and ATP levels during ischaemia were also increased by these inhibitors.  相似文献   

6.
Sex-related differences in mortality from ischaemic heart disease are attributed chiefly to difference in the incidence of atherosclerosis. Little attention has been paid to the influence of sex hormones on resistance of the myocardium itself to acute ischaemia. Experiments on rats showed that isolated female hearts were more resistant than male hearts. A period of eight weeks spent at an altitude of 1,350 m raised heart resistance only in males. Conversely, gonadectomy abruptly reduced the resistance of the male heart to ischaemia, especially under conditions of mild altitude hypoxia. The administration of oestradiol to gonadectomized male rats largely abolished the disturbance caused by isolated gonadectomy. Since coronary vasoconstriction and vasospasm lead to temporary ischaemia and even to infarction, the above effect of the sex hormones may play a role in the increased incidence of heart attacks after the gonads have ceased to function.  相似文献   

7.
In the rat, in which a diurnal fluctuation of the sensitivity to noradrenaline was previously found, the effect of injected 6-hydroxydopamine (6-OHDA) was investigated. The heat production and catecholamines contents in the interscapular brown adipose tissue, heart and adrenals were measured. Chemical sympathectomy induces a disappearance of diurnal fluctuation in the sensitivity to injected noradrenaline. In these animals a lower capacity for heat production was found. However, a significant calorigenic effect of injected noradrenaline in 6-OHDA-treated animals was still present. In sympathectomized animals a depletion of noradrenaline from interscapular brown adipose tissue and the heart was observed. Besides, a change in adrenaline/noradrenaline ratio was found in the adrenals.  相似文献   

8.
Mitochondria are chronically exposed to reactive oxygen intermediates. As a result, various tissues, including skeletal muscle and heart, are characterized by an age-associated increase in reactive oxidant-induced mitochondrial DNA (mtDNA) damage. It has been postulated that these alterations may result in a decline in the content and rate of production of ATP, which may affect tissue function, contribute to the aging process, and lead to several disease states. We show that with age, ATP content and production decreased by approximately 50% in isolated rat mitochondria from the gastrocnemius muscle; however, no decline was observed in heart mitochondria. The decline observed in skeletal muscle may be a factor in the process of sarcopenia, which increases in incidence with advancing age. Lifelong caloric restriction, which prolongs maximum life span in animals, did not attenuate the age-related decline in ATP content or rate of production in skeletal muscle and had no effect on the heart. 8-Oxo-7,8-dihydro-2'-deoxyguanosine in skeletal muscle mtDNA was unaffected by aging but decreased 30% with caloric restriction, suggesting that the mechanisms that decrease oxidative stress in these tissues with caloric restriction are independent from ATP availability. The generation of reactive oxygen species, as indicated by H2O2 production in isolated mitochondria, did not change significantly with age in skeletal muscle or in the heart. Caloric restriction tended to reduce the levels of H2O2 production in the muscle but not in the heart. These data are the first to show that an age-associated decline in ATP content and rate of ATP production is tissue specific, in that it occurs in skeletal muscle but not heart, and that mitochondrial ATP production was unaltered by caloric restriction in both tissues.  相似文献   

9.
We have shown earlier that proteins released from the heart during preconditioning may protect non-preconditioned heart during sustained ischaemia, similarly as preconditioning itself. In other our experiments we have documented that also proteins released from isolated rat liver during reperfusion after global ischaemia performed a protective effect on isolated rat heart against ischaemia-reperfusion injury. In the current study we examined the effect of liver ischaemia in situ on resistance of rat heart to ischaemia and reperfusion injury. Wistar rats (male) were subjected to liver ischaemia maintained by occlusion of portal vein and hepatic artery for 20 min, followed with 30-min reperfusion after reopening of both vessels. Then the hearts were isolated and perfused according to Langendorf. Hearts, after initial stabilisation (15 min), were subjected to 20-min ischaemia and 30-min reperfusion. During reperfusion, the haemodynamic parameters of hearts were measured. The protein pattern of high soluble fraction (HS fraction) isolated from rat blood by precipitation with ammonium sulphate was detected by SDS-PAGE. Our results showed improved parameters of pressure and contractility in the group after liver ischaemia (ischaemic group), presented by decreased diastolic pressure and increased LVDP((S-D)) in comparison with levels of these parameters in the control group. We also observed improved heart contraction-relaxation cycles parameters (dP/dt)(max) and (dP/dt)(min) in ischaemic group as compared with the control group. On the other hand, there were no significant differences in heart rate and coronary flow between both experimental groups. SDS-PAGE showed changed protein pattern in HS fraction, particularly the levels of several low molecular weight proteins increased. We conclude that liver ischaemia induced a higher resistance of heart against ischaemia-reperfusion injury. We propose that release of some cardioprotective proteins present in HS fraction can also contribute to this cardioprotection.  相似文献   

10.
When loaded with high (pathological) levels of Ca2+, mitochondria become swollen and uncoupled as the result of a large non-specific increase in membrane permeability. This process, known as the mitochondrial permeability transition (MPT), is exacerbated by oxidative stress and adenine nucleotide depletion. These conditions match those that a heart experiences during reperfusion following a period of ischaemia. The MPT is caused by the opening of a non-specific pore that can be prevented by sub-micromolar concentrations of cyclosporin A (CsA). A variety of conditions that increase the sensitivity of pore opening to [Ca2+], such as thiol modification, oxidative stress, increased matrix volume and chaotropic agents, all enhance the binding of matrix cyclophilin (CyP) to the inner mitochondrial membrane in a CsA-sensitive manner. In contrast, ADP, membrane potential and low pH decrease the sensitivity of pore opening to [Ca2+] without affecting CyP binding. We present a model of pore opening involving CyP binding to a membrane target protein followed by Ca2+-dependent triggering of a conformational change to induce channel opening. Using the ischaemic/reperfused rat heart we have shown that the mitochondrial pore does not open during ischaemia, but does do so during reperfusion. Recovery of heart during reperfusion is improved in the presence of 0.2 µM CsA, suggesting that the MPT may be critical in the transition from reversible to irreversible reperfusion injury. (Mol Cell Biochem 174: 167–172, 1997)  相似文献   

11.
It has previously been shown that apoptosis is increased in ischaemic/reperfused heart. However, little is known about the mechanism of induction of apoptosis in myocardium during ischaemia. We investigated whether prolonged myocardial ischaemia causes activation of caspases and whether this activation is related to cytochrome c release from mitochondria to cytosol during ischaemia. Using an in vitro model of heart ischaemia, we show that 60 min ischaemia leads to a significant accumulation of cytochrome c in the cytosol and a decrease in mitochondrial content of cytochrome c but not cytochrome a. The release of cytochrome c from mitochondria was accompanied by activation of caspase-3-like proteases (measured by cleavage of fluorogenic peptide substrate DEVD-amc) and a large increase in number of cells with DNA strand breaks (measured by TUNEL staining). Caspase-1-like proteases (measured by YVAD-amc cleavage) were not activated during ischaemia. Addition of 14 microM cytochrome c to cytosolic extracts prepared from control hearts induced ATP-dependent activation of caspase-3-like protease activity. Our data suggest that extended heart ischaemia can cause apoptosis mediated by release of cytochrome c from mitochondria and subsequent activation of caspase-3.  相似文献   

12.
Akt is a serine-threonine kinase that mediates a variety of cellular responses to external stimuli. During postnatal development, Akt signaling in the heart was up-regulated when the heart was rapidly growing and was down-regulated by caloric restriction, suggesting a role of Akt in nutrient-dependent regulation of cardiac growth. Consistent with this notion, reductions in Akt, 70-kDa S6 kinase 1, and eukaryotic initiation factor 4E-binding protein 1 phosphorylation were observed in mice with cardiac-specific deletion of insulin receptor gene, which exhibit a small heart phenotype. In contrast to wild type animals, caloric restriction in these mice had little effect on Akt phosphorylation in the heart. Furthermore, forced expression of Akt1 in these hearts restored 70-kDa S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1 phosphorylation to normal levels and rescued the small heart phenotype. Collectively, these results indicate that Akt signaling mediates insulin-dependent physiological heart growth during postnatal development and suggest a mechanism by which heart size is coordinated with overall body size as the nutritional status of the organism is varied.  相似文献   

13.
p38 MAPK is activated potently during cardiac ischaemia, although the precise mechanism by which it is activated is unclear. We used the isolated perfused rat heart to investigate the signalling pathways activated upstream of p38 during global cardiac ischaemia. Ischaemia strongly activated p38α but not the JNK pathway. The MAPKKs, MKK3, MKK4 and MKK6 have previously been identified as potential upstream activators of p38; however, in the ischaemic perfused heart, we saw activation of MKK3 and MKK6 but not MKK4. MKK3 and MKK6 showed different temporal patterns of activity, indicating distinct modes of activation and physiological function. Consistent with a lack of JNK activation, we saw no activation of MKK4 or MKK7 at any time point during ischaemia. A lack of MKK4 activation indicates, at least in the ischaemic heart, that MKK4 is not a physiologically relevant activator of p38. The MAPKKK, ASK1, was strongly activated late during ischaemia, with a similar time course to that of MKK6 and in ischaemic neonatal cardiac myocytes ASK1 expression preferentially activated MKK6 rather than MKK3. These observations suggest that during ischaemia ASK1 is coupled to p38 activation primarily via MKK6. Potent activation of ASK1 during ischaemia without JNK activation shows that during cardiac ischaemia, ASK1 preferentially activates the p38 pathway. These results demonstrate a specificity of responses seldom seen in previous studies and illustrate the benefits of using direct assays in intact tissues responding to physiologically relevant stimuli to unravel the complexities of MAPK signalling.  相似文献   

14.
Fetal undernutrition programmes increased risk of developing cardiovascular disease in adult life. We hypothesized that prenatal protein restriction would impair recovery in post-ischaemic cardiac function in adult offspring through antioxidant-mediated processes. Pregnant Wistar rats were fed control or maternal low protein diets (MLP) throughout gestation. The offspring of these rats were treated with either saline, N-acetylcysteine (NAC), diethylmaleate (DEM), or both NAC and DEM to manipulate glutathione status at 6 months of age. Hearts were rapidly excised and retro-perfused (Langendorff) to assess isolated cardiac function before (baseline), and during 30 min global ischaemia and 60 min reperfusion. Hearts from adult rats exposed to a MLP diet in utero suffered greater cardiac dysfunction than those from controls following 30 min ischaemia. Left ventricular developed pressure (LVDP) was significantly reduced upon early reperfusion (p<0.042) in MLP rats compared to controls. NAC pre-treatment had no effect on LVDP of hearts from control animal hearts but improved the revival of MLP hearts to the same level as controls. DEM treatment did not affect control hearts but significantly reduced recovery of LVDP of MLP hearts during early (p<0.008) and late reperfusion (0.035). Combined NAC and DEM treatment had no effect on LVDP between control and MLP fed offspring. Prenatal protein restriction throughout pregnancy increases the susceptibility of the adult rat heart to suffer a functional deficit following ischaemia-reperfusion injury. Pharmacologically improving antioxidant status prevented this injury. A nutritionally-imbalanced developmental environment may increase susceptibility to coronary heart disease through the programming of myocardial glutathione metabolism.  相似文献   

15.
In order to know the beneficial effect of preconditioning electrocardiography recording were used as tool to assess myocardial malfunction and for this perfusion apparatus was setup. Electrophysiological changes for each heart were recorded during perfusion at 1, 2, 3, 5, 10, 20, 30 and 60 min of global ischaemia and also during the equal period of reperfusion. Recordings dembnstrate that the normal rate was about 240 beats/min with an "R" amplitude of 4mV. During the first ischaemic episode of 1min the rate was 180 +/- 15 beats/min (counted as per 'R' wave deflection), at 2 mins it was 60 +/- 6 beats/min, at 3 min the rate was 40 +/- 2 beats/min, at 5 mins of ischaemia it was 90 +/- 6 beats/min, at 10 min 20 +/- 2 beats/min, at 20 min the rate was 60 +/- 4 beats/min, and at 30 mins there were nil beats/min. The recovery during all the periods of reperfusion was restored to between 120 and 180 beats/min in all episodes. Further after a 60 min of ischaemia the heart stopped to elicit any mechanical response. It is concluded that short term ischaemia can induce a resilient effect on the beating of the heart after a few episodes as seen subsequent to 1 and 2 min of ischaemia. Further, preconditioning was beneficial up to 30 min, beyond which the heart showed signs of fatigue and irreversible injury.  相似文献   

16.
Presynaptic neural projections are thought to participate in the maturation of postsynaptic sensitivity to neurotransmitters. In the current study, we have examined the effects of sympathectomy with 6-hydroxydopamine on the ontogeny of the linkage of beta-adrenergic receptors to cardiac growth and heart rate control in the rat. Destruction of sympathetic projections at birth compromised the ability of beta-receptor stimulation to evoke cardiac hypertrophy, a defect which persisted into young adulthood. The chronotropic response to beta-receptor activation, assessed by acute challenge with a submaximally-effective dose of isoproterenol, also exhibited a slowed development, but did eventually achieve normal sensitivity. In contrast, neonatal sympathectomy had only minor effects on resting heart rate, basal heart rate (the intrinsic rate in the absence of autonomic input) or maximal heart rate; these animals also showed beta-receptor desensitization of chronotropic action in response to chronic isoproterenol treatment. Chronic isoproterenol treatment itself lowered the basal heart rate, regardless of whether animals were normal or sympathectomized. Thus, during critical developmental periods, sympathetic input to beta-receptors selectively programmes the linkage between postsynaptic receptors, tissue growth and heart rate.  相似文献   

17.
OBJECTIVE--To evaluate the effect of metoprolol, a beta adrenergic blocking drug, on the occurrence of myocardial ischaemia during endoscopic cholangiopancreatography. DESIGN--Double blind, randomised, controlled trial. SETTING--University Hospital. SUBJECTS--38 (two groups of 19) patients scheduled for endoscopic cholangiopancreatography. INTERVENTIONS--Metoprolol 100 mg or placebo as premedication two hours before endoscopy. MAIN OUTCOME MEASURES--Heart rate, arterial oxygen saturation by continuous pulse oximetry, ST segment changes during endoscopic cholangiopancreatography (an ST segment deviation > 1 mV was defined as myocardial ischaemia), electrocardiogram monitored continuously with a Holter tape recorder. RESULTS--All patients had increased heart rate during endoscopy compared with rate before endoscopy, but heart rate during endoscopy was significantly lower in the metoprolol group compared with the placebo group (P = 0.0002). Twenty one patients (16 placebo, 5 metoprolol; P = 0.0008) developed tachycardia (heart rate > 100/min) during the procedure, and 11 patients (10 placebo, 1 metoprolol; P = 0.003) developed myocardial ischaemia. One patient in the placebo group had an acute inferolateral myocardial infarction. In the 10 other patients with signs of myocardial ischaemia during endoscopy the ST deviation disappeared when the endoscope was retracted. In all patients myocardial ischaemia was related to increases in heart rate, and 10 of the 11 patients had tachycardia coherent with myocardial ischaemia. CONCLUSIONS--Metoprolol prevented myocardial ischaemia during endoscopic cholangiopancreatography, probably through lowering the heart rate. Thus, tachycardia seems to be a key pathogenic factor in the development of myocardial ischaemia during endoscopy.  相似文献   

18.
The present investigation studies the effect of aging, short-term and long-term caloric restriction on four different markers of oxidative, glycoxidative or lipoxidative damage to heart mitochondrial proteins: protein carbonyls (measured by ELISA); N epsilon -(carboxyethyl)lysine (CEL), N epsilon -(carboxymethyl)lysine (CML), and N epsilon -(malondialdehyde)lysine (MDA-lys) measured by gas chromatography/mass spectrometry. Aging increased the steady state level of CML in rat heart mitochondria without changing the levels of the other three markers of protein damage. Short-term caloric restriction (six weeks) did not change any of the parameters measured. However, long-term (one year) caloric restriction decreased CEL and MDA-lys in heart mitochondria and did not change protein carbonyls and CML levels. The decrease in MDA-lys was not due to changes in the sensitivity of mitochondrial lipids to peroxidation since the measurements of the fatty acid composition showed that the total number of fatty acid double bonds was not changed by caloric restriction. The decrease in CEL and MDA-lys in caloric restriction agrees with the previously and consistently described finding that caloric restriction agrees with the previously and consistently described finding that caloric restriction lowers the rate of generation of reactive oxygen species (ROS) in rodent heart mitochondria, although in the case of CEL a caloric restriction-induced lowering of glycaemia can also be involved. The CEL and MDA-lys results support the notion that caloric restriction decreases oxidative stress-derived damage to heart mitochondrial proteins.  相似文献   

19.
The acid phosphatase and cathepsin D activities and cAMP and cGMP levels in isolated perfused rat heart were investigated during various periods of ischaemic myocardial injury and postischaemic reperfusion. The effect of phosphodiesterase inhibitor--caffeine was also studied. Free acid hydrolases activities and cyclic nucleotide content were increased under 40 and 60 min ischemia and 20 min postischaemic reperfusion. Addition of 50 microM caffeine to perfusion solution after 30 min of ischaemia resulted in increase of cAMP level, cAMP/cGMP ratio, lysosomal bound activities of acid hydrolase and decrease of free acid hydrolase activities. The obtained results suggested that defect in cAMP synthesis might be present in lysosomal membranes labilization in cardiomyocytes injured during ischaemic conditions. Addition of such agents, as caffeine, which increased heart cAMP level, may be effective in lysosomal membranes stabilization under reversible heart ischaemia and reperfusion.  相似文献   

20.
The present investigation studies the effect of aging, short-term and long-term caloric restriction on four different markers of oxidative, glycoxidative or lipoxidative damage to heart mitochondrial proteins: protein carbonyls (measured by ELISA); N epsilon -(carboxyethyl)lysine (CEL), N epsilon -(carboxymethyl)lysine (CML), and N epsilon -(malondialdehyde)lysine (MDA-lys) measured by gas chromatography/mass spectrometry. Aging increased the steady state level of CML in rat heart mitochondria without changing the levels of the other three markers of protein damage. Short-term caloric restriction (six weeks) did not change any of the parameters measured. However, long-term (one year) caloric restriction decreased CEL and MDA-lys in heart mitochondria and did not change protein carbonyls and CML levels. The decrease in MDA-lys was not due to changes in the sensitivity of mitochondrial lipids to peroxidation since the measurements of the fatty acid composition showed that the total number of fatty acid double bonds was not changed by caloric restriction. The decrease in CEL and MDA-lys in caloric restriction agrees with the previously and consistently described finding that caloric restriction agrees with the previously and consistently described finding that caloric restriction lowers the rate of generation of reactive oxygen species (ROS) in rodent heart mitochondria, although in the case of CEL a caloric restriction-induced lowering of glycaemia can also be involved. The CEL and MDA-lys results support the notion that caloric restriction decreases oxidative stress-derived damage to heart mitochondrial proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号