首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1alpha and HNF-1beta, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1alpha and mutant HNF-1beta in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1alpha and 13 mutant HNF-1alpha, as well as wild HNF-1beta and 2 mutant HNF-1beta, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1alpha and wild HNF-1beta significantly transactivated DPP-IV promoter, but mutant HNF-1alpha and mutant HNF-1beta exhibited low transactivation activity. Moreover, to study whether mutant HNF-1alpha and mutant HNF-1beta change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1alpha or wild HNF-1beta, or else respective dominant-negative mutant HNF-1alphaT539fsdelC or dominant-negative mutant HNF-1betaR177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1alpha cells and wild HNF-1beta cells, whereas they decreased in HNF-1alphaT539fsdelC cells and HNF-1betaR177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1alpha and wild HNF-1beta have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1alpha and mutant HNF-1beta attenuate the stimulatory effect.  相似文献   

2.
3.
4.
Mutations in the hepatocyte nuclear factor 4alpha (HNF-4alpha) gene are associated with one form of maturity-onset diabetes of the young (MODY1). The R154X mutation generates a protein lacking the E-domain which is required for normal HNF-4alpha functions. Since pancreatic beta-cell dysfunction is a feature of MODY1 patients, we compared the functional properties of the R154X mutant in insulin-secreting pancreatic beta-cells and non-beta-cells. The R154X mutation did not affect nuclear localisation in beta-cells and non-beta-cells. However, it did lead to a greater impairment of HNF-4a function in beta-cells compared to non-beta-cells, including a complete loss of transactivation activity and a dominant-negative behaviour. .  相似文献   

5.
6.
7.
8.
9.
Maturity-onset diabetes of the young (MODY) is a rare subtype of type 2 diabetes that is characterized by autosomal-dominant inheritance and can be caused by mutations in hepatocyte nuclear factor 4alpha (HNF-4alpha). Odom and colleagues have combined chromatin immunoprecipitation with promoter microarrays to identify numerous promoters occupied by HNF-4alpha in the human liver and islet, suggesting a very broad role for HNF-4alpha in glucose homeostasis. This notion is supported by recent genetic studies linking HNF-4alpha to the much more common late-onset type 2 diabetes.  相似文献   

10.
11.
12.
13.
The synergistic action of hepatocyte nuclear factor (HNF)-1alpha and HNF-4 plays an important role in expression of the alpha(1)-antitrypsin (alpha(1)-AT) gene in human hepatic and intestinal epithelial cells. Recent studies have indicated that the alpha(1)-AT gene is also expressed in human pulmonary alveolar epithelial cells, a potentially important local site of the lung antiprotease defense. In this study, we examined the possibility that alpha(1)-AT gene expression in a human pulmonary epithelial cell line H441 was also directed by the synergistic action of HNF-1alpha and HNF-4 and/or by the action of HNF-3, which has been shown to play a dominant role in gene expression in H441 cells. The results show that alpha(1)-AT gene expression in H441 cells is predominantly driven by HNF-1beta, even though HNF-1beta has no effect on alpha(1)-AT gene expression in human hepatic Hep G2 and human intestinal epithelial Caco-2 cell lines. Expression of alpha(1)-AT and HNF-1beta was also demonstrated in primary cultures of human respiratory epithelial cells. HNF-4 has no effect on alpha(1)-AT gene expression in H441 cells, even when it is cotransfected with HNF-1beta or HNF-1alpha. HNF-3 by itself has little effect on alpha(1)-AT gene expression in H441, Hep G2, or Caco-2 cells but tends to have an upregulating effect when cotransfected with HNF-1 in Hep G2 and Caco-2 cells. These results indicate the unique involvement of HNF-1beta in alpha(1)-AT gene expression in a cell line and primary cultures derived from human respiratory epithelium.  相似文献   

14.
15.
16.
17.
18.
19.
Mice deficient in hepatocyte nuclear factor 1 alpha (HNF-1alpha) develop dwarfism, liver dysfunction, and type 2 diabetes mellitus. Liver dysfunction in HNF-1alpha-null mice includes severe hepatic glycogen accumulation and dyslipidemia. The liver dysfunction may appear as soon as 2 weeks after birth. Since the HNF-1alpha-null mice become diabetic 2 weeks after birth, the early onset of the liver dysfunction is unlikely to be due to the diabetic status of the mice. More likely, it is due directly to the deficiency of HNF-1alpha in liver. Although the HNF-1alpha-null mice have an average life span of 1 year, the severe liver phenotype has thwarted attempts to study the pathogenesis of maturity-onset diabetes of the young type 3 (MODY3) and to examine therapeutic strategies for diabetes prevention and treatment in these mice. To circumvent this problem, we have generated a new Hnf-1alpha mutant mouse line, Hnf-1alpha(kin/kin), using gene targeting to inactivate the Hnf-1alpha gene and at the same time, to incorporate the Cre-loxP DNA recombination system into the locus for later revival of the Hnf-1alpha gene in tissues by tissue-specifically expressed Cre recombinase. The Hnf-1alpha(kin/kin) mice in which the expression of HNF-1alpha was inactivated in germ line cells were indistinguishable from the HNF-1alpha-null mice with regard to both the diabetes and liver phenotypes. Intriguingly, when the inactivated Hnf-1alpha gene was revived in liver (hepatic Hnf-1alpha revived) by the Cre recombinase driven by an albumin promoter, the Hnf-1alpha(kin/kin) mice, although severely diabetic, grew normally and did not develop any of the liver dysfunctions. In addition, we showed that the expression of numerous genes in pancreas, including a marker gene for pancreas injury, was affected by liver dysfunction but not by the deficiency of HNF-1alpha in pancreas. Thus, our hepatic-Hnf-1alpha-revived mice may serve as a useful mouse model to study the human MODY3 disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号