首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
X L Dai  J Triepel  C Heym 《Histochemistry》1986,85(4):327-334
The immunohistochemical localization of neuropeptide Y (NPY) was correlated with those of dopamine-beta-hydroxylase (DBH) and vasoactive intestinal polypeptide (VIP) by mapping serial 7 micron paraffin sections at three levels of the guinea pig lower brainstem: a) area postrema, b) dorsal motor nucleus of the vagus, and c) nucleus prepositus of the hypoglossal nerve. Based on differences in transmitter expression, three populations of NPY-immunoreactive (IR) neurons were distinguished: NPY-IR catecholaminergic cells (NPY/CA), NPY-IR VIP-ergic cells (NPY/VIP), and NYP-IR cells which were not reactive to either DBH or VIP. Within these populations, size differences among neurons in characteristic locations allowed differentiation among the following subpopulations: NPY/CA neurons in the lateral reticular nucleus--magnocellular part (mean neuronal size 538 micron2) and parvocellular part (318 micron2)-, in the vagus-solitarius complex (433 micron2), and in the dorsal strip (348 micron2); NPY/VIP neurons in the vagus-solitarius complex (368 micron2) and in the nucleus ovalis (236 micron2). Apart from scattered NPY-IR cell bodies in the regions listed above, NPY-IR cell bodies in the lateral portion of the nucleus solitarius and in the caudal part of the spinal nucleus of the trigeminal nerve did not exhibit IR to either DBH or VIP. NPY-IR neurons in the area postrema occurred too infrequently for co-localization studies. The differential distribution of heterogeneous NPY-IR cell subpopulations may reflect the involvement of NPY in a variety of neuronal functions.  相似文献   

2.
Peptide YY is a highly potent emetic when given intravenously in dogs. We hypothesized that the area postrema, a small brain stem nucleus that acts as a chemoreceptive trigger zone for vomiting and lies outside the blood-brain barrier, might have receptors that PYY would bind to, in order to mediate the emetic response. We prepared [125I]PYY and used autoradiography to show that high affinity binding sites for this ligand were highly localized in the area postrema and related nuclei of the dog medulla oblongata. Furthermore, the distribution of [125I]PYY binding sites in the rat medulla oblongata was very similar to that in the dog; the distribution of [125I]PYY binding sites throughout the rat brain was seen to be similar to the distribution of [125I]NPY binding sites.  相似文献   

3.
The Y5 receptor has been postulated to be the main receptor mediating NPY-induced food intake in rats, based on its pharmacological profile and mRNA distribution. To further characterize this important receptor subtype, we isolated the Y5 gene in the guinea pig, a widely used laboratory animal in which all other known NPY receptors (Y1, Y2, Y4, y6) [2,13,33,37] have recently been cloned by our group. Our results show that the Y5 receptor is well conserved between species; guinea pig Y5 displays 96% overall amino acid sequence identity to human Y5, the highest identity reported for any non-primate NPY receptor orthologue, regardless of subtype. Thirteen of the twenty substitutions occur in the large third cytoplasmic loop. The identities between the guinea pig Y5 receptor and the dog, rat, and mouse Y5 receptors are 93%, 89%, and 89% respectively. When transiently expressed in EBNA cells, the guinea pig Y5 receptor showed a high binding affinity to iodinated porcine PYY with a dissociation constant of 0.41 nM. Competition experiments showed that the rank order of potency for NPY-analogues was PYY = NPY = NPY2-36 > gpPP > rPP > NPY 22-36. Thus the pharmacological profile of the guinea pig Y5 receptor agrees well with that reported for the Y5 receptor from other cloned species.  相似文献   

4.
We studied by immunocytochemistry the expression of adrenomedullin (AM) in the human medulla oblongata, sampled from 13 adult subjects (mean age: 38 years), whose medical history was negative for neurological and neurovascular pathologies. Immunoreactive neurons were found in the medulla oblongata with statistically significant differences among the various nuclei (one-way ANOVA, P < 0.001). The hypoglossal nucleus showed higher AM expression than that of the spinal tract of the trigeminal nerve (P < 0.05), solitary tract nucleus (P < 0.05), nucleus intercalatus (P < 0.05), and area postrema (P < 0.05). The arcuate nucleus and inferior olivary nuclear complex showed lower AM expression than the hypoglossal nucleus (P < 0.001), vestibular nuclei (P < 0.01), cuneate and gracile nuclei (P < 0.05), lateral column of the reticular formation (P < 0.05), and nucleus ambiguous (P < 0.05). Furthermore the nuclei were grouped with reference to their function, into somatic sensitive nuclei, somatic motor nuclei, visceral nuclei, reticular formation, and nuclei involved in cerebellar functions. The ANOVA revealed statistically significant differences (P < 0.001) in mean AM scores among the different groups. Nuclei involved in cerebellar function showed the lowest mean AM score (P < 0.05). The difference in AM score between somatic motor nuclei and visceral nuclei was also statistically significant (P < 0.05). Widespread AM immunoreactivity in the nuclei of the medulla oblongata may account for the role of the peptide in neuronal function and regulation of regional blood flow. Differences in the expression of AM in the nuclei studied indicate the different involvement of AM in neurotransmission and neuromodulation.  相似文献   

5.
Histamine plays important roles in gastric acid secretion, inflammation, and allergic response. Histamine N-methyltransferase (HMT; EC 2.1.1.8) is crucial to the inactivation of histamine in tissues. In this study we investigated the immunohistochemical localization of this enzyme in guinea pig tissues using a rabbit polyclonal antibody against bovine HMT. The specificity of the antibody for guinea pig HMT was confirmed by Western blotting and the lack of any staining using antiserum preabsorbed with purified HMT. There was strong HMT-like immunoreactivity (HMT-LI) in the epithelial cells in the gastrointestinal tract, especially in the gastric body, duodenum, and jejunum. The columnar epithelium in the gallbladder was also strongly positive. Almost all the myenteric plexus from the stomach to the colon was stained whereas the submucous plexus was not. Other strongly immunoreactive cells included the ciliated cells in the trachea and the transitional epithelium of the bladder. Intermediately immunoreactive cells included islets of Langerhans, epidermal cells of the skin, alveolar cells in the lung, urinary tubules in the kidney, and epithelium of semiferous tubules. HMT-LI was present in specific structures in the guinea pig tissues. The widespread distribution of HMT-LI suggests that histamine has several roles in different tissues.  相似文献   

6.
Neuropeptide Y (NPY) has prominent stimulatory effects on food intake in virtually all animals that have been studied. In mammals, the effect is primarily mediated by receptors Y1 and Y5, which seem to contribute to different aspects of feeding behavior in guinea pigs and rats/mice. Interestingly, differences in receptor distribution among mammalian species have been reported. To get a broader perspective on the role of Y5, we describe here studies of guinea pig (Cavia porcellus), a species which due to its phylogenetic position in the mammalian radiation is an interesting complement to previous studies in rat and mouse. Guinea pig brain sections were hybridized with two 35S-labeled oligonucleotides complementary to Y5 mRNA. The highest expression levels of Y5 mRNA were observed in the hippocampus and several hypothalamic and brain stem nuclei implicated in the regulation of feeding, such as the paraventricular, arcuate and ventromedial hypothalamic nuclei. This contrasts with autoradiography studies that detected low Y5-like binding in these areas, a discrepancy observed also in rat and human. Y5 mRNA expression was also seen in the striatum, in great contrast to mouse and rat. Taken together, these data show that Y5 mRNA distribution displays some interesting species differences, but that its expression in feeding centers seems to be essentially conserved among mammals, adding further support for an important role in food intake.  相似文献   

7.
《Peptides》1986,7(1):27-31
Neuropeptide Y (NPY) infusions into isolated, perfused, spontaneously beating hearts of guinea pigs elicited concentration-dependent increases of myocardial perfusion pressure and decreases of myocardial tension, but no consistent changes of heart rate. The increase of perfusion pressure caused by NPY (attributed to a constrictor effect on coronary vessels) was not affected by atropine, prazosin, yohimbine, propranolol, cimetidine, diphenhydramine, indomethacin or a mixture of methysergide and morphine. However, it was reduced by verapamil, a Ca2+ antagonist. Deletion of the N-terminal amino acid Tyr1 from the NPY molecule caused a 12-fold reduction of NPY potency as a coronary constrictor. Further shortening of the NPY molecule by removal of sequence Tyr1 through Glu15 or Tyr1 through Ala18 caused major losses of potency without detectable reduction of intrinsic activity. The results suggest that the constrictor effect of NPY on guinea pig coronary vessels results from a direct effect on vascular smooth muscle cells, is mediated by specific receptors and is likely to involve the participation of extracellular calcium ions. The results also suggest that the chemical groups responsible for the vasoconstrictor effect of NPY in guinea pig hearts might be scattered in the C-terminal end of the peptide.  相似文献   

8.
We have cloned the guinea pig neuropeptide Y (NPY) Y1 receptor and found it to be 92-93% identical to other cloned mammalian Y1 receptors. Porcine NPY and peptide YY (PYY) displayed affinities of 43 pM and 48 pM, respectively. NPY2-36 and NPY3-36 had 6- and 46-fold lower affinity, respectively, than intact NPY. Functional coupling was measured by using a microphysiometer. Human NPY and PYY were equipotent in causing extracellular acidification with EC50 values of 0.59 nM and 0.69 nM, respectively, whereas NPY2-36 and NPY3-36 were about 15-fold and 500-fold less potent, respectively, than NPY. The present study shows that the cloned guinea pig Y1 receptor is very similar to its orthologues in other mammals, both with respect to sequence and pharmacology. Thus, results from previous studies on guinea pig NPY receptors might imply the existence of an additional Y1-like receptor sensitive to B1BP3226.  相似文献   

9.
The occurrence and distribution of neurotensin-immunoreactive (NT-IR) perikarya was studied in the central nervous system of the guinea pig using a newly raised antibody (KN 1). Numerous NT-IR perikarya were found in the nuclei amygdaloidei, nuclei septi interventriculare, hypothalamus, nucleus parafascicularis thalami, substantia grisea centralis mesencephali, ventral medulla oblongata, nucleus solitarius and spinal cord. The distribution of NT-IR perikarya was similar to that previously described in the rat and monkey. In the gyrus cinguli, hippocampus and nucleus olfactorius, though, no NT-IR neurons were detected in this investigation. Additional immunoreactive perikarya, however, were observed in areas of the ventral medulla oblongata, namely in the nucleus paragigantocellularis, nucleus retrofacialis and nucleus raphe obscurus. The relevance of the NT-IR perikarya within the ventral medulla oblongata is discussed with respect to other neuropeptides, which are found in this area, and to cardiovascular regulation.  相似文献   

10.
Triepel  J.  Mader  J.  Weindl  A.  Heinrich  D.  Forssmann  W. G.  Metz  J. 《Histochemistry and cell biology》1984,81(6):509-516
Summary The occurrence and distribution of neurotensin-immunoreactive (NT-IR) perikarya was studied in the central nervous system of the guinea pig using a newly raised antibody (KN 1). Numerous NT-IR perikarya were found in the nuclei amygdaloidei, nuclei septi interventriculare, hypothalamus, nucleus parafascicularis thalami, substantia grisea centralis mesencephali, ventral medulla oblongata, nucleus solitarius and spinal cord. The distribution of NT-IR perikarya was similar to that previously described in the rat and monkey. In the gyrus cinguli, hippocampus and nucleus olfactorius, though, no NT-IR neurons were detected in this investigation. Additional immunoreactive perikarya, however, were observed in areas of the ventral medulla oblongata, namely in the nucleus paragigantocellularis, nucleus retrofacialis and nucleus raphe obscurus.The relevance of the NT-IR perikarya within the ventral medulla oblongata is discussed with respect to other neuropeptides, which are found in this area, and to cardiovascular regulation.Abbreviations abl nucleus amygdaloideus basalis lateralis - abm nucleus amygdaloideus basalis medialis - acc nucleus amygdaloideus centralis - aco nucleus amygdaloideus corticalis - ahp area posterior hypothalami - ala nucleus amygdaloideus lateralis anterior - alp nucleus amygdaloideus lateralis posterior - ame nucleus amygdaloideus medialis - atv area tegmentalis ventralis - bst nucleus proprius striae terminalis - CA commissura anterior - CC corpus callosum - cgld corpus geniculatum laterale dorsale - cglv corpus geniculatum laterale ventrale - cgm corpus geniculatum mediale - CHO chiasma opticum - CI capsula interna - co nucleus commissuralis - cod nucleus cochlearis dorsalis - cp nucleus caudatus/Putamen - cs colliculus superior - cu nucleus cuneatus - dmh nucleus dorsomedialis hypothalami - DP decussatio pyramidum - em eminentia mediana - ent cortex entorhinalis - epi epiphysis - FLM fasciculus longitudinalis medialis - fm nucleus paraventricularis hypothalami pars filiformis - FX fornix - gd gyrus dentatus - gp globus pallidus - gr nucleus gracilis - hl nucleus habenulae lateralis - hm nucleus habenulae medialis - hpe hippocampus - ift nucleus infratrigeminalis - io oliva inferior - ip nucleus interpeduncularis - LM lemniscus medialis - MT tractus mamillo-thalamicus - na nucleus arcuatus - nls nucleus lateralis septi - nms nucleus medialis septi - npca nucleus proprius commissurae anterioris - ns nucleus solitarius - n III nucleus nervi oculomotorii - nt V nucleus tractus spinalis nervi trigemini - ntm nucleus mesencephalicus nervi trigemini - osc organum subcommissurale - P tractus cortico-spinalis - PC pedunculus cerebri - PCI pedunculus cerebellaris inferior - pir cortex piriformis - pol area praeoptica lateralis - pom area praeoptica medialis - prt area praetectalis - pt nucleus parataenialis - pvh nucleus paraventricularis hypothalami - pvt nucleus paraventricularis thalami - r nucleus ruber - re nucleus reuniens - rgi nucleus reticularis gigantocellularis - rl nucleus reticularis lateralis - rm nucleus raphe magnus - ro nucleus raphe obscurus - rp nucleus raphe pallidus - rpc nucleus reticularis parvocellularis - rpgc nucleus reticularis paragigantocellularis - sch nucleus suprachiasmaticus - SM stria medullaris thalami - snc substantia nigra compacta - snl substantia nigra lateralis - snr substantia nigra reticularis - ST stria terminalis - tad nucleus anterior dorsalis thalami - tam nucleus anterior medialis thalami - tav nucleus anterior ventralis thalami - tbl nucleus tuberolateralis - tc nucleus centralis thalami - tl nucleus lateralis thalami - tmd nucleus medialis dorsalis thalami - TO tractus opticus - TOL tractus olfactorium lateralis - tpo nucleus posterior thalami - tr nucleus reticularis thalami - trs nucleus triangularis septi - TS tractus solitarius - TS V tractus spinalis nervi trigemini - tvl nucleus ventrolateralis thalami - vmh nucleus ventromedialis hypothalami - vh ventral horn, Columna anterior - zi zona incerta Supported by the Deutsche Forschungsgesellschaft (DFG) SFB 90, Carvas  相似文献   

11.
Summary The ependyma of the IVth ventricle and the central canal of the rat medulla oblongata was investigated using the cytochemical technique for alkaline phosphatase (AlPase) which revealed two types of ependymal cells in the medulla. The central canal type of the ependymal cell occupying the dorsal part of the central canal in the lower medulla exhibited intense AlPase activity with light microscopy. These cells had reaction products in all plasma membranes, including the microvilli and the cilia at the luminal cell surface. Some cells appeared to be tanycytes, since the process reached the basement membrane of the parenchymal blood vessel. The ventricular type of ependymal cells, which form the floor of the IVth ventricle and the central canal, contained no reaction products in any structure of the luminal cell surface.The possible relationship between the cerebrospinal fluid and the nervous tissues through the ependymal linings is discussed.  相似文献   

12.
Summary Layers containing Auerbach's and Meissner's plexuses were dissected from the small intestine of guinea pig and immunostained with affinity-purified antibodies against brain-specific microtubule-associated proteins (MAPs): MAP1, MAP2 and tau and a MAP with a molecular weight of 190000 dalton purified from bovine adrenal cortex (190-kDa MAP). MAP1 antibody stained the network of nerve fibers and the cell bodies of enteric neurons in both Auerbach's and Meissner's plexuses. Staining with anti-tau antibody gave the same results. Antibody against MAP2 stained neuronal cell bodies and short thin processes extending from them. Interganglionic strands composed mainly of long processes were unstained. Anti-190-kDa MAP antibody stained both the neuronal cell bodies and bundles of nerve fibers. However, the staining was less intense than that with anti-MAP1 and tau antibodies. Differentiation in the structure of the cytoskeleton probably exists in the neuronal processes of the enteric neurons as is shown in the dendrites and axons in some neurons of the central nervous system. Thus, enteric neurons possess axon-like processes containing MAP1, tau and probably lower amounts of 190-kDa MAP. Cell bodies and dendrite-like structures of these neurons contain MAP2 in addition to MAP1, tau and 190-kDa MAP.  相似文献   

13.
14.
Receptors for neuropeptide Y (NPY) and peptide YY (PYY) have been extensively characterized in the brain. Less is known about NPY receptor subtypes in the spleen, though it is well established that NPY produces vascular contraction in this tissue. In the present study, we found an unusually high density of Y1 receptors in the guinea pig spleen. These receptors are localized to the red pulp and exhibit a pharmacology that is consistent with the Y1 receptor. On the other hand, only very low densities for Y2 receptors were observed. Therefore, the guinea pig spleen may be a ideal tissue for further study of the role of Y1 receptors in cardiovascular and immune function.  相似文献   

15.
Summary Localization of -aminobutyric acid (GABA) in the ventrolateral medulla oblongata of the rat was studied, using antisera directed against GABA molecule fixed to bovine serum albumin. Within the rostral portion of the ventrolateral medulla, GABA-like immunoreactive neurons were found in the lateral wing of the raphe magnus and in the region of the paragigantocellular reticular nucleus. In the caudal portion of the ventrolateral medulla, a lesser number of GABA-stained neurons were found in the region around the nucleus reticularis lateralis. GABA-like immunoreactive punctate structures were also found throughout the ventrolateral medulla. These results provide further evidence for the existence of GABAergic neurons in the ventrolateral medulla oblongata of the rat.  相似文献   

16.
Histochemical study of estradiol in the guinea pig ovary using RIA antiserum revealed specific estradiol fluorescence in theca interna cells and in single cells of atretic follicles. The fluorescence intensity was highest in the estrus phase.  相似文献   

17.
M Kihara  T Kubo 《Histochemistry》1989,91(4):309-314
Localization of gamma-aminobutyric acid (GABA) in the ventrolateral medulla oblongata of the rat was studied, using antisera directed against GABA molecule fixed to bovine serum albumin. Within the rostral portion of the ventrolateral medulla, GABA-like immunoreactive neurons were found in the lateral wing of the raphe magnus and in the region of the paragigantocellular reticular nucleus. In the caudal portion of the ventrolateral medulla, a lesser number of GABA-stained neurons were found in the region around the nucleus reticularis lateralis. GABA-like immunoreactive punctate structures were also found throughout the ventrolateral medulla. These results provide further evidence for the existence of GABAergic neurons in the ventrolateral medulla oblongata of the rat.  相似文献   

18.
Prostate glands of adult guinea pigs were stained for nerve growth factor (NGF) and epidermal growth factor (EGF) by immunohistochemical methods. Both NGF and EGF were localized diffusely in the cytoplasm of the glandular epithelial cells, and also in their secretory products. These findings suggest that NGF and EGF are synthesized, stored, and secreted by the glandular epithelial cells of the prostate.  相似文献   

19.
Summary Prostate glands of adult guinea pigs were stained for nerve growth factor (NGF) and epidermal growth factor (EGF) by immunohistochemical methods. Both NGF and EGF were localized diffusely in the cytoplasm of the glandular epithelial cells, and also in their secretory products. These findings suggest that NGF and EGF are synthesized, stored, and secreted by the glandular epithelial cells of the prostate.  相似文献   

20.
Summary The tissue distribution of a polypeptide purified from pig ileal mucosa tentatively called porcine ileal polypeptide (PIP) and known to have potent acid secretagogue activity has been studied with immunohistochemical methods together with extraction of different tissues followed by radioimmunoassay for PIP content. Histochemically the peptide is found in superficial epithelial cells in the mucosa of the distal 20% of the small intestine and to some extent in the mucosa of the urinary tract. There is no staining of goblet cells or crypt cells. The staining in the urinary tract mucosa is due to antigenic peptides with Mr identical to PIP. While the presence of PIP in the ileum is compatible with a function as an enterooxyntin, it is not possible at present to explain the physiologic role of PIP entirely as a hormone regulating acid secretion in light of the immunohistochemical distribution.Supported in part by a grant from the NIH AM-27077 and the Sinai Hospital General Research Fund  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号