首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GTPase-activating protein (GAP) enhances the rate of GTP hydrolysis by cellular Ras proteins and is implicated in mitogenic signal transduction. GAP is phosphorylated on tyrosine in cells transformed by Rous sarcoma virus and serves as an in vitro substrate of the viral Src (v-Src) kinase. Our previous studies showed that GAP complexes stably with normal cellular Src (c-Src), although its association with v-Src is less stable. To further investigate the molecular basis for interactions between GAP and the Src kinases, we examined GAP association with and phosphorylation by a series of c-Src and v-Src mutants. Analysis of GAP association with c-Src/v-Src chimeric proteins demonstrates that GAP associates stably with Src proteins possessing low kinase activity and poorly with activated Src kinases, especially those that lack the carboxy-terminal segment of c-Src containing the regulatory amino acid Tyr-527. Phosphorylated Tyr-527 is a major determinant of c-Src association with GAP, as demonstrated by c-Src point mutants in which Tyr-527 is changed to Phe. While the isolated amino-terminal half of the c-Src protein is insufficient for stable GAP association, analysis of point substitutions of highly conserved amino acid residues in the c-Src SH2 region indicate that this region also influences Src-GAP complex formation. Therefore, our results suggest that both Tyr-527 phosphorylation and the SH2 region contribute to stable association of c-Src with GAP. Analysis of in vivo phosphorylation of GAP by v-Src mutants containing deletions encompassing the SH2, SH3, and unique regions suggests that the kinase domain of v-Src contains sufficient substrate specificity for GAP phosphorylation. Even though tyrosine phosphorylation of GAP correlates to certain extent with the transforming ability of various c-Src and v-Src mutants, our data suggest that other GAP-associated proteins may also have roles in Src-mediated oncogenic transformation. These findings provide additional evidence for the specificity of Src interactions with GAP and support the hypothesis that these interactions contribute to the biological functions of the Scr kinases.  相似文献   

2.
The oncogenic potential of the viral tyrosine kinase v-Src is due to its constitutive activity. Unlike the highly homologous cellular c-Src kinase, a C-terminal deletion of the regulatory tail and numerous point mutations make the viral kinase uncontrollable. To determine the basis of these differences, we analysed the structure and stability of v-Src and c-Src in vitro. We show that the stability of v-Src against unfolding and irreversible aggregation is significantly lower than that of c-Src. Furthermore, in v-Src hydrophobic residues are more exposed already in the native state. In consequence, v-Src was found to be inactive close to physiological temperatures. We thus suggest that the ensemble of mutations that transform c-Src into the oncogenic variant cause a concomitant destabilisation of the kinase.  相似文献   

3.
In the cells transformed by Rous sarcoma virus (RSV), two Src proteins are expressed: the ubiquitous tyrosine kinase c-Src and the v-Src, the product of the transforming gene of the virus. Using three synthetic peptide substrates widely used for testing Src kinase activity, we show that they are phosphorylated with different efficiencies by the v-Src and c-Src tyrosine kinases immunoprecipitated from the tumor cell line H19. The v-Src displays higher efficiency (Vmax/Km ratio) toward all three peptides used, but the Vmax of v-Src is much lower than Vmax of c-Src with two peptides out of three. This difference in substrate specificity, if ignored, may cause misestimation of the amounts of active c-Src and v-Src in RSV-transformed cells. On the other hand, the different peptide substrate specificities may also reflect different protein substrate specificities of the v-Src and c-Src kinases in vivo.  相似文献   

4.
The protein product of the CT10 virus, p47gag-crk (v-Crk), which contains Src homology region 2 (SH2) and 3 (SH3) domains but lacks a kinase domain, is believed to cause an increase in cellular protein tyrosine phosphorylation. A candidate tyrosine kinase, Csk (C-terminal Src kinase), has been implicated in c-Src Tyr-527 phosphorylation, which negatively regulates the protein tyrosine kinase of pp60c-src (c-Src). To investigate how c-Src kinase activity is regulated in vivo, we first looked at whether v-Crk can activate c-Src kinase. We found that cooverexpression of v-Crk and c-Src caused elevation of c-Src kinase activity, resulting in an increase of tyrosine phosphorylation of cellular proteins and morphological transformation of rat 3Y1 fibroblasts. v-Crk and c-Src complexes were not detected, although v-Crk bound to a variety of tyrosine-phosphorylated proteins in cells overexpressing v-Crk and c-Src. Overexpression of Csk in these transformed cells caused reversion to normal phenotypes and also reduced the level of c-Src kinase activity. However, Csk did not cause reversion of cells transformed by v-Src or c-Src527F, in which Tyr-527 was changed to Phe. These results strongly suggest that Csk acts on Tyr-527 of c-Src and suppresses c-Src kinase activity in vivo. Because Csk can suppress transformation by cooverexpression of v-Crk and c-Src, we suggest that v-Crk causes activation of c-Src in vivo by altering the phosphorylation state of Tyr-527.  相似文献   

5.
GTPase-activating protein (GAP) is a key regulator of the cellular Ras protein, which is implicated in oncogenic signal transduction pathways downstream of the viral Src (v-Src) kinase. Previous studies demonstrated that v-Src induces tyrosine phosphorylation of GAP, suggesting that GAP may provide a biochemical link between v-Src and Ras signaling pathways. To determine the precise residues in GAP phosphorylated by Src kinases, we used a baculovirus/insect cell expression system for investigating in vitro phosphorylation of GAP. Phosphopeptide mapping analysis revealed that v-Src and normal cellular Src (c-Src) phosphorylate tyrosine residues in bovine GAP at one major site and one minor site in vitro. Significantly, the major site of GAP phosphorylation in vitro is also the major site of in vivo tyrosine phosphorylation of GAP in rat fibroblasts transformed by v-Src. Analyses of GAP deletion mutants and TrpE-GAP fusion proteins established that Tyr-457 of bovine GAP (and the corresponding residue of rat and human GAP) is the major site of tyrosine phosphorylation. Our results demonstrate that the v-Src kinase induces phosphorylation of the same tyrosine residue of GAP in vitro and in vivo, suggesting that GAP is a direct substrate of activated Src kinases in vivo. Because epidermal growth factor receptor phosphorylates the equivalent tyrosine residue in human GAP (Tyr-460), these findings are consistent with the hypothesis that specific phosphorylation of GAP at this site may have a physiologically important role in regulating mitogenic Ras signaling pathways.  相似文献   

6.
The phosphotransferase activity of the Rous sarcoma virus src gene product, pp60src, was inhibited both in vitro and in vivo by the bioflavonoid quercetin. The Ki for the inhibitory effect was in the range of 6-11 microM under conditions in vitro. The inhibitory effect of quercetin was competitive towards the nucleotides ATP and GTP as substrates for pp60src and was non-competitive towards alpha-casein as the protein substrate of this kinase activity. In contrast, studies in vitro of the phosphotransferase activity of the catalytic subunit of the cAMP-dependent protein kinase showed that this flavonoid did not inhibit the phosphorylation of physiological substrates of this enzyme. In cultured cells the half-maximal inhibition of tyrosine phosphorylation of pp60src as well as the phosphorylation of the Mr = 34000 protein, a physiological substrate of pp60src, was in the range 0.06-0.08 mM.  相似文献   

7.
8.
Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation   总被引:17,自引:0,他引:17  
Sphingosine kinase 1 is an agonist-activated signalling enzyme that catalyses the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses, including stimulation of cell proliferation, inhibition of apoptosis and expression of inflammatory molecules. Although agonist-induced stimulation of sphingosine kinase activity is critical in a number of signalling pathways, nothing has been known of the molecular mechanism of this activation. Here we show that this activation results directly from phosphorylation of sphingosine kinase 1 at Ser225, and present several lines of evidence to show compellingly that the activating kinase is ERK1/2 or a close relative. Furthermore, we show that phosphorylation of sphingosine kinase 1 at Ser225 results not only in an increase in enzyme activity, but is also necessary for translocation of the enzyme from the cytosol to the plasma membrane. Thus, these studies have elucidated the mechanism of agonist-mediated sphingosine kinase activation, and represent a key finding in understanding the regulation of sphingosine kinase/sphingosine 1-phosphate-controlled signalling pathways.  相似文献   

9.
Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase   总被引:5,自引:0,他引:5  
The capsaicin receptor TRPV1 is a nonselective cation channel that is expressed in sensory neurons. In this study, we examined the role of the nonreceptor cellular tyrosine kinase c-Src kinase in the modulation of the rat TRPV1. Capsaicin-induced currents in identified colonic dorsal root ganglion neurons were blocked by the c-Src kinase inhibitor PP2 and enhanced by the tyrosine phosphatase inhibitor sodium orthovandate. PP2 also abolished currents in human embryonic kidney-293 cells transfected with rat TRPV1, whereas cotransfection of TRPV1 with v-Src resulted in fivefold increase in capsaicin-induced currents. In cells transfected with dominant-negative c-Src and TRPV1, capsaicin-induced currents were decreased by approximately fourfold. TRPV1 co-immunoprecipitated with Src kinase and was tyrosine phosphorylated. These studies demonstrate that TRPV1 is a potential target for cellular tyrosine kinase-dependent phosphorylation.  相似文献   

10.
The relationship between tyrosine phosphorylation and activation of phospholipase D1 (PLD1) by v-Src was examined. Co-expression of v-Src and PLD1 in COS-7 cells resulted in increased activity and marked tyrosine phosphorylation of PLD1. PLD activity was increased in membranes or immunoprecipitates prepared from these cells. Dephosphorylation of the immunoprecipitated enzyme by tyrosine phosphatase or phosphorylation by c-Src produced no changes in its activity. Tyrosine phosphorylation induced by v-Src caused a shift of the enzyme from the Triton-soluble to the Triton-insoluble fraction. v-Src and PLD1 could be co-immunoprecipitated from cells co-expressing these and were co-localized in the perinuclear region as assessed by immunofluorescence. Mutation of the palmitoylation sites of PLD1 significantly reduced tyrosine phosphorylation by v-Src. It is concluded that tyrosine phosphorylation of PLD1 by v-Src does not per se alter its activity. It is proposed that activation of PLD1 by v-Src in vivo may involve association/colocalization of the two proteins.  相似文献   

11.
Active, wild-type v-Src and its kinase-dead double Y416F-K295N mutant were expressed in hamster fibroblasts. Expression of the active v-Src induced activation of endogenous c-Src and increased general protein-tyrosine phosphorylation in the infected cells. Expression of the kinase-dead mutant induced hypophosphorylation of Tyr416 of the endogenous c-Src. The inactivation of c-Src was reversible, as confirmed by in vitro kinase activity of c-Src immunoprecipitated from the kinase-dead v-Src-expressing cells. Both activation and inactivation of c-Src may be explained by direct interaction of the v-Src and c-Src that may either facilitate transphosphorylation of the regulatory Tyr416 in the activation loop, or prevent it by formation of transient dead-end complexes of the Y416F-K295N mutant with c-Src. The interaction was also indicated by co-localization of v- and c-Src proteins in immunofluorescent images of the infected cells. These results suggest that dimerization of Src plays an important role in the regulation of Src tyrosine kinase activity.  相似文献   

12.
Ras GTPase-activating protein (GAP) has been implicated in mitogenic signal transduction downstream of oncogenic and receptor tyrosine kinases. Previous studies have suggested that GAP is phosphorylated by oncogenic viral Src (v-Src) and that GAP is associated with a complex containing normal cellular Src (c-Src) in vertebrate fibroblasts. To investigate molecular interactions between the Src kinases and GAP, we developed an in vitro system for reconstituting Src-GAP complexes. For this purpose, we constructed recombinant baculovirus vectors that direct expression of Rous sarcoma virus v-Src, chicken c-Src, and bovine GAP in infected Sf9 insect cells. In vitro reconstitution experiments using baculovirus-expressed proteins demonstrate that both v-Src and c-Src associate in complexes with GAP. In addition, in vitro and in vivo phosphorylation analyses indicate that GAP serves as a substrate for both the v-Src and c-Src tyrosine kinases. To determine which structural features of GAP are involved in interactions with the Src kinases, we constructed recombinant baculoviruses that encode deletion mutants of bovine GAP. Deletion of the GAP amino-terminal portion containing Src homology 2 regions, which are highly conserved structural motifs postulated to mediate interactions among proteins, diminishes GAP phosphorylation and association with Src. This reconstitution system should facilitate further studies of molecular interactions between the Src kinases and GAP.  相似文献   

13.
The cellular proto-oncogene c-Src is a nonreceptor tyrosine kinase involved in cell growth and cytoskeletal regulation. Despite being dysregulated in a variety of human cancers, its precise functions are not fully understood. Identification of the substrates of c-Src remains a major challenge, because there is no simple way to directly stimulate its activity. Here we combine the chemical rescue of mutant c-Src and global quantitative phosphoproteomics to obtain the first high resolution snapshot of the range of tyrosine phosphorylation events that occur in the cell immediately after specific c-Src stimulation. After enrichment by anti-phosphotyrosine antibodies, we identified 29 potential novel c-Src substrate proteins. Tyrosine phosphopeptide mapping allowed the identification of 382 nonredundant tyrosine phosphopeptides on 213 phosphoproteins. Stable isotope labeling of amino acids in cell culture-based quantitation allowed the detection of 97 nonredundant tyrosine phosphopeptides whose level of phosphorylation is increased by c-Src. A large number of previously uncharacterized c-Src putative protein targets and phosphorylation sites are presented here, a majority of which play key roles in signaling and cytoskeletal networks, particularly in cell adhesion. Integrin signaling and focal adhesion kinase signaling pathway are two of the most altered pathways upon c-Src activation through chemical rescue. In this context, our study revealed the temporal connection between c-Src activation and the GTPase Rap1, known to stimulate integrin-dependent adhesion. Chemical rescue of c-Src provided a tool to dissect the spatiotemporal mechanism of activation of the Rap1 guanine exchange factor, C3G, one of the identified potential c-Src substrates that plays a role in focal adhesion signaling. In addition to unveiling the role of c-Src in the cell and, specifically, in the Crk-C3G-Rap1 pathway, these results exemplify a strategy for obtaining a comprehensive understanding of the functions of nonreceptor tyrosine kinases with high specificity and kinetic resolution.  相似文献   

14.
FAK (focal adhesion kinase) is a nonreceptor protein-tyrosine kinase activated by tyrosine phosphorylation following integrin-mediated cell adhesion. Oncogenic Src promotes enhanced and deregulated FAK tyrosine phosphorylation which has been proposed to contribute to altered cell growth and/or morphological properties associated with transformation. In this study, an inducible FAK expression system was used to study the potential role of FAK in v-Src transformation. Our results portray FAK as a major v-Src substrate that also plays a role in recruiting v-Src to phosphorylate substrates CAS (Crk-associated substrate) and paxillin. The FAK Tyr-397 autophosphorylation site was necessary for this scaffolding function, but was not required for v-Src to stably interact with and phosphorylate FAK. FAK was also shown to negatively regulate v-Src mediated phosphorylation of the FAK-related kinase PYK2. Despite these effects, FAK does not play an essential role in targeting v-Src to major cellular substrates including CAS and paxillin. Nor is FAK strictly required to achieve the altered morphological and growth characteristics of v-Src transformed cells.  相似文献   

15.
16.
Activation of casein kinase II by sphingosine   总被引:2,自引:0,他引:2  
Sphingosine activates casein kinase II in the presence of endogenous substrates as well as a synthetic peptide substrate. The activation response occurred between 12 and 25 micrograms/ml sphingosine and exhibited positive cooperativity with a Hill coefficient of 3.0. Sphingosine not only increased the Vmax of casein kinase II but decreased the Km(app) for the peptide substrate from 0.5 to 0.08 mM. In contrast, the Km(app) for MgCl2 was increased from 0.12 to 0.7 mM. Consequently, sphingosine altered significantly several parameters which determine casein kinase II activity. The effect of sphingosine was relatively specific, inasmuch as related lipids were less potent activators or largely ineffective in stimulating casein kinase II. On the other hand, the effect of sphingosine itself could be potentiated or inhibited by other lipids. Ceramide and sphingosylphosphorylcholine augmented the sphingosine effect. Phospholipids alone did not alter the activity of casein kinase II significantly, but abolished enzyme activation by sphingosine with different potencies (phosphatidylserine greater than phosphatidylethanolamine greater than phosphatidylinositol greater than phosphatidylcholine). Moreover, the sphingosine effect could be abrogated by KCI and NaCl, which alone are known to induce enzyme activation and dissociation of aggregated casein kinase II protein; LiCl and NH4Cl also inhibited the sphingosine effect. Polyamines, known activators of casein kinase II, partially mimicked the effect of sphingosine on endogenous polypeptide phosphorylation but failed to do so with the peptide substrate. These observations demonstrate that sphingosine is a potent activator of casein kinase II. The potential pharmacological and physiological modulation of casein kinase II by sphingoid bases is discussed.  相似文献   

17.
Actin of fragmin-actin complex is phosphorylated by an endogenous kinase from plasmodium of Physarum polycephalum. The phosphorylation abolishes the nucleation and capping activities of fragmin-actin complex. The kinase has been purified and termed actin kinase [Furuhashi, K. & Hatano, S. (1990) J. Cell Biol. 111, 1081-1087]. Enzymatic properties of the purified actin kinase were studied in detail. Actin kinase exhibited the highest activity under conditions physiological for the plasmodium (30 mM KCl, 6 mM MgCl2, pH 7.0). The Vmax and the Km of the enzyme for ATP were about 83 mumol/min/mg and 25 microM, respectively. The Km for fragmin-actin complex was 190 nM. The purified actin kinase phosphorylated actin of fragmin-actin complex at a constant rate regardless of Ca2+ concentration. Similarly, 2 microM cAMP, 2 microM cGMP, 2 micrograms/ml calmodulin in the presence of Ca2+ or 1 mM GTP showed no effect on the activity of the purified enzyme. Actin kinase did not phosphorylate histone H1, H2B, alpha-casein, or beta-casein, suggesting that actin kinase is a new kind of protein kinase which specifically phosphorylates actin of the fragmin-actin complex.  相似文献   

18.
The tyrosine kinase c-Src is upregulated in various human cancers irrespective of its negative regulator Csk, but the regulatory mechanisms remain unclear. Here, we show that a lipid raft-anchored Csk adaptor, Cbp/PAG, is directly involved in controlling the oncogenicity of c-Src. Using Csk-deficient cells that can be transformed by c-Src overexpression, we found that Cbp expression is markedly downregulated by c-Src activation and re-expression of Cbp efficiently suppresses c-Src transformation as well as tumorigenesis. Cbp-deficient cells are more susceptible to v-Src transformation than their parental cells. Upon phosphorylation, Cbp specifically binds to activated c-Src and sequesters it in lipid rafts, resulting in an efficient suppression of c-Src function independent of Csk. In some human cancer cells and tumors, Cbp is downregulated and the introduction of Cbp significantly suppresses tumorigenesis. These findings indicate a potential role for Cbp as a suppressor of c-Src-mediated tumor progression.  相似文献   

19.
c-Src kinase was activated when either murine NIH3T3 fibroblast cells or immunoprecipitated c-Src proteins were treated with nitric oxide generator, S-nitroso-N-acetyl penicillamine (SNAP) or sodium nitroprusside. Nitric oxide (NO) scavenger hemoglobin and N(2)O(3) scavenger homocysteine abolished the SNAP-mediated c-Src kinase activation. Phosphoamino acid analysis and peptide mapping of in vitro labeled phospho-c-Src proteins revealed that SNAP promoted the autophosphorylation at tyrosine, which preferentially took place at Tyr-416. Peptide mapping of in vivo labeled c-Src kinase excluded the involvement of phospho-Tyr-527 dephosphorylation in the SNAP-mediated activation mechanism. Correspondingly, protein-tyrosine phosphatase inhibitor Na(3)VO(4) did not abolish the SNAP-mediated activation of Src kinase, and the constitutively activated v-Src kinase was also further up-regulated in activity by SNAP. SNAP, however, failed to up-regulate the kinase activity of Phe-416 mutant v-Src. 2-Mercaptoethanol or dithiothreitol, which should disrupt N(2)O(3)-mediated S-nitrosylation and subsequent formation of the S-S bond, abolished the up-regulated catalytic activity, and the activity was regained after re-exposing the enzyme to SNAP. Exposure of Src kinase to SNAP promoted both autophosphorylation and S-S bond-mediated aggregation of the kinase molecules, demonstrating a linkage between the two events. These results suggest that the NO/N(2)O(3)-provoked S-nitrosylation/S-S bond formation destabilizes the Src structure for Tyr-416 autophosphorylation-associated activation bypassing the Tyr-527-linked regulation.  相似文献   

20.
Elevated expression and aberrant activation of the src oncogene are strongly associated with cancer initiation and progression, thereby making Src a promising molecular target for anti-cancer therapy. Through drug screening using a temperature-inducible v-Src-transformed epithelial cell line, we found that andrographolide could suppress v-Src-induced transformation and down-regulate v-Src protein expression. In addition, actin cable dissolution and E-cadherin down-regulation, features of transformed phenotype, are perturbed by andrographolide. Moreover, andrographolide promoted v-Src degradation via a ubiquitin-dependent manner. Although andrographolide treatment altered the tyrosine phosphorylation pattern in v-Src-expressing cells, it did not directly affect the kinase activity of v-Src. Both the Erk and phosphatidylinositol 3-kinase signaling pathways were strongly inhibited in andrographolide-treated v-Src cells. However, only MKK inhibitors (PD98059 and U0126) were able to cause a non-transformed morphology similar to that of andrographolide-treated v-Src cells. Moreover, overexpression of constitutively active MKK1 in v-Src cells blocked andrographolide-mediated morphological inhibition. Interestingly, andrographolide treatment could also reduce the protein level of the c-Src truncation mutant (Src531), an Src mutant originally identified from human colon cancer cells. In summary, we demonstrated that andrographolide antagonized v-Src action through promotion of v-Src protein degradation. Furthermore, attenuation of the Erk1/2 signaling pathway is essential for andrographolide-mediated inhibition of v-Src transformation. Our results demonstrate that andrographolide can act as a v-Src inhibitor and reveal a novel action mechanism of andrographolide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号