共查询到20条相似文献,搜索用时 0 毫秒
1.
Fuqiang Xu Bettye Hollins Anne M. Gress Teresa M. Landers Timothy S. McClintock 《Journal of neurochemistry》1997,69(5):1793-1800
Abstract: We have isolated from an American lobster ( Homarus americanus ) olfactory organ cDNA library a clone, lobGαs , with >70% identity to mammalian and arthropod Gαs sequences. In genomic Southern blots, a fragment of lobGαs detected only one band, suggesting the lobsters have a single Gαs gene. In brain and olfactory organ, lobGαs mRNA was expressed predominantly in neurons, including many of the neuronal cell body clusters of the brain. Gαs protein was also expressed broadly, appearing on western blots as a band of 51.8 kDa in brain, eyestalk, pereiopod, dactyl, tail muscle, olfactory organ, and aesthetasc hairs. These results suggest that lobGαs plays a role in a wide variety of signal transduction events. Its presence in the olfactory aesthetasc hairs, which are almost pure preparations of the outer dendrites of the olfactory receptor neurons, and the expression of lobGαs mRNA in the olfactory receptor neurons of the olfactory organ indicate that lobGαs may mediate olfactory transduction. That virtually all ORNs express lobGαs mRNA equally predicts that hyperpolarizing odor responses mediated by cyclic AMP are a property of all lobster olfactory receptor neurons. 相似文献
2.
Timothy S. McClintock Fuqiang Xu Jorge Quintero Anne M. Gress Teresa M. Landers 《Journal of neurochemistry》1997,68(6):2248-2254
Abstract: We have isolated from an American lobster ( Homarus americanus ) olfactory organ cDNA library a clone, hGαq , with >80% identity to mammalian and arthropod Gαq sequences. In brain and olfactory organ, hGαq mRNA was expressed predominantly in neurons, including virtually all the neuronal cell body clusters of the brain. Gαq protein was also expressed broadly, appearing on western blots as a single band of 46 kDa in brain, eyestalk, pereiopod, dactyl, tail muscle, olfactory organ, and aesthetasc hairs. These results suggest that hGαq plays a role in a wide variety of signal transduction events. Its presence in the olfactory aesthetasc hairs, which are almost pure preparations of the outer dendrites of the olfactory receptor neurons, the expression of a single hGαq mRNA species (6 kb) in the olfactory organ, and the localization of hGαq mRNA predominantly in the olfactory receptor neurons of the olfactory organ strongly suggest that one function of hGαq is to mediate olfactory transduction. 相似文献
3.
Shiraiwa T Kashiwayanagi M Iijima T Murakami M 《Biochemical and biophysical research communications》2007,355(4):1019-1024
Despite the expression of voltage-dependent Ca2+ channels in nasal turbinate epithelium, their role in odorant chemosensation has remained obscure. Therefore, we investigated olfactory neurotransduction in beta3-deficient mice. RT-PCR and Western blots confirmed the expression of various types of Ca2+ channels in the nasal turbinate. Electrophysiological evaluations revealed that beta3-null mice had a 60% reduction in the high-voltage-dependent Ca2+ currents in olfactory receptor neurons due to reduced N- and L-type channel currents. The beta3-null mice showed increased olfactory neuronal activity to triethylamine, and this effect was mimicked by the perfusion of the specific N-type Ca2+ channel inhibitor omega-conotoxin GVIA in the electro-olfactogram. Diluted male urine odors induced higher Fos immunoreactivity in the main olfactory bulbs of beta3-deficient mice, indicating enhanced signal transduction of odor information in these mice. Our data indicate the involvement of voltage-dependent Ca2+ channels and importance of the beta3 subunit in olfactory signal transduction. 相似文献
4.
Michele L. Rankin Rebecca S. Alvania Evanna L. Gleason & Richard C. Bruch 《Journal of neurochemistry》1999,72(2):541-548
Abstract : Desensitization of many G protein-coupled receptors after ligand binding generally involves phosphorylation of the receptors and internalization of the ligandbound, phosphorylated receptors by a clathrin-mediated endocytic pathway. Olfactory receptor neurons from the channel catfish ( Ictalurus punctatus ) express the G protein-coupled odorant receptors and metabotropic glutamate receptors. To determine whether a clathrin-dependent receptor internalization pathway exists in olfactory receptor neurons, western blotting and immunocytochemistry were used to identify and localize clathrin and dynamin in isolated olfactory neurons. Clathrin and dynamin immunoreactivity was found in the cell bodies, dendrites, and dendritic knobs of the neurons. Using the activity-dependent fluorescent dye FM1-43 to monitor receptor internalization, we show that single olfactory neurons stimulated with the odorant amino acid l -glumate internalized the dye. Odorant-stimulated neurons showed a consistent pattern of internalized FM1-43 fluorescence localized in the cell bodies and dendritic knobs. Odorant-stimulated internalization was unaffected by the caveolae activator okadaic acid and was significantly decreased by a metabotropic glutamate receptor antagonist, suggesting that a functional, clathrindependent, receptor-mediated internalization pathway exists in olfactory receptor neurons. 相似文献
5.
(1) Pre-mRNA editing of serotonin 2C (5-HT2C) and glutamate (Glu) receptors (R) influences higher brain functions and pathological states such as epilepsy, amyotrophic
lateral sclerosis, and depression. Adenosine deaminases acting on RNA (ADAR1–3) convert adenosine to inosine on synthetic
RNAs, analogous to 5-HT2cR and GluR. The order of editing as well as mechanisms controlling editing in native neurons is unknown. (2) With single-cell
RT-PCR we investigated the co-expression of ADAR genes with GluR and 5-HT2CR and determined the editing status at known sites in the hypothalamic tuberomamillary nucleus, a major center for wakefulness
and arousal. (3) The most frequently expressed enzymes were ADAR1, followed by ADAR2. The Q/R site of GluR2 was always fully
edited. Editing at the R/G site in the GluR2 (but not GluR4) subunit was co-ordinated with ADAR expression: maximal editing
was found in neurons expressing both ADAR2 splice variants of the deaminase domain and lacking ADAR3. (4) Editing of the 5-HT2CR did not correlate with ADAR expression. The 5-HT2CR mRNA was always edited at A, in the majority of cells at B sites and variably edited at E, C and D sites. A negative correlation
was found between editing of C and D sites. The GluR4 R/G site editing was homogeneous within individuals: it was fully edited
in all neurons obtained from 12 rats and under-edited in six neurons obtained from three rats. (5) We conclude that GluR2
R/G editing is controlled at the level of ADAR2 and therefore this enzyme may be a target for pharmacotherapy. On the other
hand, further factors/enzymes besides ADAR must control or influence 5-HT2CR and GluR pre-mRNA editing in native neurons; our data indicate that these factors vary between individuals and could be
predictors of psychiatric disease. 相似文献
6.
Gerhard Reich Ingrid Boekhoff Heinz Breer Barry W. Ache 《Journal of neurochemistry》1999,73(1):147-152
An elevated free Ca2+ concentration reduces odor-stimulated production of cyclic AMP (cAMP) in the outer dendritic membranes of lobster olfactory receptor neurons in vitro. This effect can occur within 50 ms of odor stimulation. The effect is concentration-dependent at submicromolar concentrations of free Ca2+. An elevated free Ca2+ concentration also reduces basal and forskolin-stimulated cAMP levels in a concentration-dependent manner, suggesting that Ca2+ is not targeting the activation of the odor receptor/G protein complex. The degradation of synthetic cAMP by phosphodiesterases is not enhanced by an increased free Ca2+ concentration, suggesting that Ca2+ acts by down-regulating the olfactory adenylyl cyclase. Western blot analysis of the lobster olfactory sensilla that contain the outer dendrites reveals a protein in the transduction zone with a molecular mass of approximately 138 kDa that is immunoreactive to an antiserum against adenylyl cyclase type III. Given earlier evidence that Ca2+ potentially enters the receptor cell through odor-activated inositol 1,4,5-trisphosphate-gated channels, our results suggest a possible route for cross talk between the cyclic nucleotide and the inositol phospholipid signaling pathways in lobster olfactory receptor neurons. 相似文献
7.
We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs
of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with
total conductances in the range 30–75 nS. The dose response curve for calcium exhibited an EC50 of about 26 μm. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between −80 and +70 mV.
When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data
with the Goldman-Hodgkin-Katz equation revealed a PNa/PCl of 0.034. The halide permeability sequence was PCl > PF > PI > PBr indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels
were also permeable to the large organic anions, SCN−, acetate−, and gluconate−, with the permeability sequence PCl > PSCN > Pacetate > Pgluconate. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 \A.
Received: 16 April 1997/Revised: 3 October 1997 相似文献
8.
Ulrich Mayer Alexander Küller Philipp C. Daiber Inge Neudorf Uwe Warnken Martina Schnlzer Stephan Frings Frank Mhrlen 《Proteomics》2009,9(2):322-334
Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca2+ for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC‐ESI‐MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle. 相似文献
9.
To understand avian olfaction, it is important to characterize the peripheral olfactory system of a representative bird species. This study determined the functional properties of olfactory receptor neurons of the chicken olfactory epithelium. Individual neurons were acutely isolated from embryonic day-18 to newborn chicks by dissection and enzymatic dissociation. We tested single olfactory neurons with behaviorally relevant odorant mixtures and measured their responses using ratiometric calcium imaging; techniques used in this study were identical to those used in other studies of olfaction in other vertebrate species. Chick olfactory neurons displayed properties similar to those found in other vertebrates: they responded to odorant stimuli with either decreases or increases in intracellular calcium, calcium increases were mediated by a calcium influx, and responses were reversibly inhibited by 100 M L–cis–diltiazem, 1 mM Neomycin, and 20 M U73122, which are biochemical inhibitors of second messenger signaling. In addition, some cells showed a complex pattern of responses, with different odorant mixtures eliciting increases or decreases in calcium in the same cell. It appears that there are common features of odorant signaling shared by a variety of vertebrate species, as well as features that may be peculiar to chickens. 相似文献
10.
Nitric oxide (NO) activates a K+ current in dissociated amphibian olfactory receptor neurons. Using the patch-clamp technique in its whole-cell mode and stimulation
with puffs of the NO-donor sodium nitroprusside, we further studied this effect and show that it was sensitive to the K+-channel blockers tetraethylammonium and iberiotoxin, indicating the activation of a Ca2+-dependent K+ conductance. The Ca2+-channel blockers nifedipine and cadmium abolished the NO-induced current, and lowering external Ca2+ reduced it significantly. Ca2+ imaging showed a transient fluorescence increase upon stimulation with NO, and after blockade of K+ currents, an NO-induced inward current could be measured, suggesting that the activation of the Ca2+-dependent K+ conductance is mediated by Ca2+ influx. LY83583, a blocker of the ciliary cAMP-gated channels, did not affect the current, and experiments with focal stimulation
indicated that the effect is present in the soma, therefore Ca2+ is unlikely to enter via the transduction channels. Finally, we show that NO exerts an effect with similar characteristics
on olfactory receptor neurons from the rat. These data represent the first evidence that NO activates a Ca2+-dependent K+ conductance by causing a Ca2+ influx in a sensory system, and suggest that NO signaling plays a role in the physiology of vertebrate olfactory receptor
neurons.
Received: 25 October 1999/Revised: 2 March 2000 相似文献
11.
Olfactory receptor neurons respond to odorants with G protein-mediated increases in the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) and/or inositol-1,4,5-trisphosphate (IP3). This study provides evidence that both second messengers can directly activate distinct ion channels in excised inside-out patches from the dendritic knob and soma membrane of rat olfactory receptor neurons (ORNs). The IP3-gated channels in the dendritic knob and soma membranes could be classified into two types, with conductances of 40 +/- 7 pS (n = 5) and 14 +/- 3 pS (n = 4), with the former having longer open dwell times. Estimated values of the densities of both channels from the same inside-out membrane patches were very much smaller for IP3-gated than for CNG channels. For example, in the dendritic knob membrane there were about 1000 CNG channels x microm(-2) compared to about 85 IP3-gated channels x microm(-2). Furthermore, only about 36% of the dendritic knob patches responded to IP3, whereas 83% of the same patches responded to cAMP. In the soma, both channel densities were lower, with the CNG channel density again being larger ( approximately 57 channels x microm(-2)) than that of the IP3-gated channels ( approximately 13 channels x microm(-2)), with again a much smaller fraction of patches responding to IP3 than to cAMP. These results were consistent with other evidence suggesting that the cAMP-pathway dominates the IP3 pathway in mammalian olfactory transduction. 相似文献
12.
Neurons discovered in male Helicoverpa zea antennae that correlate with pheromone-mediated attraction and interspecific antagonism 总被引:1,自引:0,他引:1
A. A. Cossé J. L. Todd T. C. Baker 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1998,182(5):585-594
Responses of single receptor neurons in the antennae of male Helicoverpa zea to sex pheromone components and to behavioral antagonists were recorded using a cut-sensillum extracellular recording technique.
Three types of sensilla were identified from sampling 325 male-specific sensilla trichodea located at the lateral edge of
antennomeres. The majority of these sensilla (71%) contained a receptor neuron tuned to the principal sex pheromone component
(Z)-11-hexadecenal. A second sensillar type (10%) contained a receptor neuron that responded only to (Z)-9-tetradecenal. A third sensillar type (19%) contained a large-spiking neuron tuned to the secondary pheromone component
(Z)-9-hexadecenal, but this neuron also could be stimulated to equivalent spike frequencies by the same emitted amounts of (Z)-9-tetradecenal. A smaller-spiking neuron in this sensillar type responded to two compounds known to act only as behavioral
antagonists, (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate, and to (Z)-9-tetradecenal. Cross-adaptation studies confirmed the presence of one large- and one small-spiking neuron in the third
sensillar type. Dose-response studies correlated to collected stimuli amounts showed that the large-spiking neuron in the
third sensillar type was equally tuned to (Z)-9-hexadecenal and (Z)-9-tetradecenal, whereas the smaller-spiking neuron was far more sensitive to (Z)-11-hexadecen-1-ol and to (Z)-11-hexadecenyl acetate than to (Z)-9-tetradecenal.
Accepted: 29 September 1997 相似文献
13.
Abstract: The mechanism of glutamate release from cultured cerebellar granule neurones in response to a chemical model of ischaemia (10 m M 2-deoxyglucose plus 1 m M sodium cyanide) was investigated. In the first 2 min of ischaemia, release of preloaded d -[3 H]aspartate could be extensively attenuated by tetanus toxin and bafilomycin A1 and was dependent on the activation of Ca2+ channels sensitive to the "Q" type Ca2+ channel antagonist, ω-conotoxin-MVIIC. During this period, ATP/ADP ratios fell rapidly. The extent of release in the first 2 min was comparable to that evoked by 2-min depolarization by 50 m M KCl. Free Ca2+ concentrations, determined in neurites and somata, did not increase until after 2 min. The neurite increase in cellular Ca2+ precedes that of the cell somata. Release of d -[3 H]aspartate was partially inhibited by the NMDA receptor antagonist MK-801, which also delayed the increase in free Ca2+ concentration. Prolonging the period of ischaemia to 6 and 10 min produced no further increase in the apparently exocytotic component of release, but initiated an extensive nonexocytotic release of the amino acid. Studies with the synaptic vesicle membrane probe FM1-43 in which released amino acid was removed by superfusion indicated that Ca2+ -dependent exocytosis was delayed in this system. It is concluded that chemical ischaemia initiates an initial exocytotic followed by nonexocytotic release and that the former is facilitated by NMDA receptor activation. These events occur in cells that are still able to exclude propidium iodide, indicating that cell death has not yet occurred. 相似文献
14.
Carnosine Release from Olfactory Bulb Synaptosomes Is Calcium-Dependent and Depolarization-Stimulated 总被引:1,自引:1,他引:0
Abstract: The dipeptide carnosine (β-alanyl-L-histidine) has been proposed as a neurotransmitter in the mammalian olfactory pathway. Therefore, the efflux of in vivo -synthesized [14 C]carnosine from mouse olfactory bulb synaptosomes was investigated. Carnosine was found to be released from the olfactory bulb synaptosomes by two mechanisms. The first is a slow spontaneous process that is independent of depolarization. The rate of this release was doubled in the presence of 1 m M external carnosine. Release by the second mechanism was markedly stimulated in the presence of calcium by depolarization with either 60 m M K+ or 300 μ M veratridine. Omission of calcium abolished the stimulatory effect of both of these agents. Further, blockage of the veratridine-induced depolarization by tetrodotoxin also inhibited carnosine release. These results are consistent with the hypothesis that carnosine acts as a neurotransmitter in the mouse olfactory pathway. 相似文献
15.
P. Peele M. Ditzen R. Menzel C. G. Galizia 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2006,192(10):1083-1103
Odors elicit spatio-temporal patterns of activity in the olfactory bulb of vertebrates and the antennal lobe of insects. There have been several reports of changes in these patterns following olfactory learning. These studies pose a conundrum: how can an animal learn to efficiently respond to a particular odor with an adequate response, if its primary representation already changes during this process? In this study, we offer a possible solution for this problem. We measured odor-evoked calcium responses in a subpopulation of uniglomerular AL output neurons in honeybees. We show that their responses to odors are remarkably resistant to plasticity following a variety of appetitive olfactory learning paradigms. There was no significant difference in the changes of odor-evoked activity between single and multiple trial forward or backward conditioning, differential conditioning, or unrewarded successive odor stimulation. In a behavioral learning experiment we show that these neurons are necessary for conditioned odor responses. We conclude that these uniglomerular projection neurons are necessary for reliable odor coding and are not modified by learning in this paradigm. The role that other projection neurons play in olfactory learning remains to be investigated. 相似文献
16.
The rat olfactory epithelium and the amino acid-sensitive catfish olfactory system have been used as models to study the molecular mechanisms of olfactory transduction. Here we report the functional expression of rat and catfish olfactory receptors in Xenopus oocytes injected with mRNA isolated from the respective tissues. Application of odor ligands to injected oocytes, monitored by two-electrode voltage clamp, activates stimulus-dependent transmembrane currents that reverse direction at about the chloride equilibrium potential. The currents show characteristic secondary oscillations that are presumed to reflect underlying Ca2+ oscillations. Similar ligand-activated membrane currents induced in oocytes after injection of other mRNAs have been shown to be due to activation of endogenous Ca(2+)-activated chloride channels. In summary, our results demonstrate the usefulness of the Xenopus oocyte expression system for cloning and characterization of olfactory receptors in both fish and mammalian species. 相似文献
17.
18.
Mess1是新近鉴定的 STE2 0家族的蛋白激酶 .对 Mess1的基因表达和蛋白功能进行研究 ,发现其 m RNA在鼠组织中广泛分布 ,但在不同细胞系中表达显著不同 ;结构分析表明 ,Mess1蛋白N端是保守的 STE2 0样激酶催化区 ,C端是高度亲水的酸性调节区 ,包含多个潜在的丝氨酸 /苏氨酸磷酸化调节位点 .哺乳动物细胞表达的 Mess1对 MBP显示出激酶活性 ,并发生自主磷酸化 .Mess1可被砷酸盐应激激活 ,但丝裂原 EGF刺激无活化效应 .表明 Mess1可能在蛋白磷酸化的早期过程中发挥作用 ,介导细胞对严重应激刺激引起的特异性反应 . 相似文献
19.
The complete amino-acid sequence of the bovine olfactory epithelium adenosine 3',5'cyclic monophosphate (cAMP)-gated channel has been determined by cloning and sequencing its cDNA. It exhibits a high degree of sequence homology with the cGMP-gated channel of rod photoreceptors, suggesting that cyclic nucleotide-gated channels fall into a new family of genetically related proteins. 相似文献