首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of bleomycin (Blm) on DNA synthesis has been studied in a synchronous culture of human embryonic lung cells. The data obtained suggest that in the Blm presence in a medium (20 micrograms/ml) DNA synthesis initiation in new replicons is suppressed. The Blm action at different S-phase intervals has been shown to inhibit DNA synthesis unequally. Four discrete time intervals have been singled out in the course of the 10-hr S-phase in which a grouped initiation of replicon portions can be supposed. Together with the data on DNA replication in large-size replicon units (50-500 microns), the obtained results account well for the uneven DNA synthesis in S-phase, manifested by 3 or 4 peaks of [3H]-thymidine incorporation in pulse-labelled cells.  相似文献   

2.
The mechanism of membrane damage by staphylococcal alpha-toxin was studied using carboxyfluorescein (internal marker)-loaded multilamellar liposomes prepared from various phospholipids and cholesterol. Liposomes composed of phosphatidylcholine or sphingomyelin and cholesterol bound alpha-toxin and released carboxyfluorescein in a dose dependent manner, when they were exposed to alpha-toxin of concentrations higher than 1 or 8 micrograms/ml, respectively. In contrast, the other liposomes composed of phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol or phosphatidylinositol plus cholesterol were not susceptible to the toxin even at high concentrations up to 870 micrograms/ml. The insensitive liposomes containing either phosphatidylserine or phosphatidylglycerol were made sensitive to alpha-toxin by inserting phosphatidylcholine into the liposomal membranes. In addition, phosphorylcholine inhibited the toxin-induced marker release from liposomes. These results indicated that the choline-containing phospholipids are required for the interaction between alpha-toxin and liposomal membranes. Susceptibility of liposomes containing phosphatidylcholine or sphingomyelin increased with the increase in cholesterol contents of the liposomes. Based on these results, we propose that the choline-containing phospholipids are possible membrane components or structures responsible for the toxin-membrane interaction, which leads to damage of membranes. Furthermore, cholesterol may facilitate the interaction between alpha-toxin and membrane as a structural component of the membrane.  相似文献   

3.
Adenovirus DNA replication is inhibited by aphidicolin but the inhibition clearly has different parameters than the inhibition of purified DNA polymerase alpha. In adenovirus infected Hela cells, 10 micrograms/ml of aphidicolin reduced viral DNA synthesis by 80%. Cellular DNA synthesis was inhibited by 97% at 0.1 microgram/ml. 10 micrograms/ml of drug had no effect on virus yield or late protein synthesis though higher concentrations of drug (50 micrograms/ml) caused an abrupt cessation of late protein synthesis and 100 micrograms/ml reduced virus yield by 3 logs. Concentrations of the drug from 0.5 microgram/ml to 10 micrograms/ml were found to dramatically slow the rate of DNA chain elongation in vitro but not stop it completely, so that over a long period of time net incorporation was reduced only slightly compared to the control. 50 micrograms/ml or 100 micrograms/ml of drug completely inhibited incorporation in vitro. Initiation of viral DNA replication - covalent attachment of dCMP to the preterminal protein - occurs in vitro. This reaction was found to be insensitive to inhibition by aphidicolin. We thus conclude that aphidicolin exerts its effect on adenovirus DNA chain elongation, but not on the primary initiation event of protein priming.  相似文献   

4.
Nitropyrenes are inducers of polyoma viral DNA synthesis   总被引:1,自引:0,他引:1  
The biological activity of a series of nitropyrenes was assayed by measuring their ability to induce the asynchronous replication of viral DNA in rat fibroblasts transformed by a ts-a mutant of polyoma virus. Concentrations of 10-30 micrograms/ml of 1-nitropyrene (1-NP) induced viral replication, and this effect was enhanced by addition of rat-liver S9 microsomal fraction (300 micrograms/ml) to the culture medium. The response was less than that obtained with 0.1 micrograms/ml of the activated metabolite of benzo[a]pyrene (BP), BP trans-7,8-dihydrodiol-9,10 epoxide (anti) (BPDE). A series of di-, tri-, and tetra-nitropyrenes were also found to induce polyoma DNA replication, in the absence of exogenous microsomal activation, displaying strongly positive effects at 0.5-2.0 microgram/ml. Dose-response curves with 1,6-dinitropyrene (1,6-DNP) from 0.01 to 0.5 microgram/ml indicated that this compound was approximately equipotent with BPDE for induction of polyoma DNA synthesis. Studies of drug metabolism, DNA binding and DNA adduct formation indicate that 1,6-DNP is metabolized in this cell line, binds to DNA, and forms stable adducts. The level of DNA modification seen with 1,6-DNP is higher than that observed under comparable conditions with an equivalent dose of BPDE. These findings provide additional evidence that the nitropyrene class of compounds can exert biological effects in mammalian cells, and that the dinitropyrenes are more potent than 1-NP.  相似文献   

5.
The effect of E-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil (BVaraU) on herpes simplex virus (HSV) replication was examined and compared with that of E-5-(2-bromovinyl)-2'-deoxyuridine (BVdUrd). The 50% inhibitory dose against HSV type 1 (HSV-1) was 0.1 microgram/ml compared with 0.008 microgram/ml for BVdUrd; the antimetabolic 50% inhibitory dose of BVaraU ranged from 20 to 95 micrograms/ml. The addition of 50 micrograms of BVaraU per ml to HSV-1-infected Vero cells decreased the synthesis of viral and cellular DNA by 37 and 28%, respectively. The 5'-triphosphate (BVaraUTP) competed with dTTP in DNA synthesis by the herpes-viral and cellular DNA polymerases; the apparent Ki values of HSV-1 DNA polymerase, DNA polymerase alpha, and DNA polymerase beta were 0.14, 0.32, and 5 microM, respectively. Thus, BVaraU was a less effective antiherpesvirus agent than BVdUrd; unlike BVdUrd, it did not appear to be internally incorporated into replicating DNA in virus-infected cells.  相似文献   

6.
DNA-damaging activity of patulin in Escherichia coli   总被引:1,自引:0,他引:1  
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

7.
The ability of acrylonitrile to induce cytotoxicity, sister-chromatid exchanges and DNA single-strand breaks was studied in cultured human bronchial epithelial cells. The toxic effect as determined by cloning efficiency was observed at a dose of 600 micrograms/ml but not at doses of both 150 and 300 micrograms/ml. The frequency of sister-chromatid exchange in untreated cells was 3.7 +/- 1.3 per cell. In contrast, cells treated with acrylonitrile at 150 and 300 micrograms/ml exhibited 6.6 +/- 1.3 and 10.7 +/- 1.7 sister-chromatid exchanges per metaphase, respectively. DNA single-strand breaks were induced by acrylonitrile at dose levels of 200 and 500 micrograms/ml. The genotoxic effects on human bronchial epithelial cells that were directly exposed to acrylonitrile are of interest in relation to evidence for the higher lung cancer incidence of acrylonitrile workers in epidemiological studies.  相似文献   

8.
9.
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

10.
The aim of the present study was to investigate bromodeoxyuridine (BrdU) uptake and coordinated distribution of proliferating cell nuclear antigen (PCNA) and p34-cdc2-kinase, two important proteins involved in cell cycle regulation and progression. Flow cytometric analysis of marker proteins in freshly plated mouse T-lymphoma cells (Yac-1 cells), using fluorescein isothiocyanate (FITC)-labeled specific antibodies, showed PCNA distributed throughout the cell cycle with increased intensity in S-phase. PCNA is essential for cells to cycle through S-phase and its synthesis is initiated during late G1-phase before incorporation of BrdU and remains high during active DNA replication. The intensity of PCNA fluorescence increases with the duration of incubation after plating. The cdc2-kinase was detectable in all phases of the cell cycle and the G2-M-phase appears to have the maximum concentrations. The cell cycle analysis of high dose colcemid (2 μg/ml) treated Yac-1 cells showed an aneuploid or hypodiploid population. Although the G2-M-phase seems to be the dominating population in aneuploid cells, the concentrations of cdc2-kinase were variable in this phase of cell cycle. The colcemid treatment at 25 ng/ml arrested 96% of cells in S-phase and G2-M-phase, but PCNA expression was evident in a portion of the cell population in G2-M-phase. Although cells blocked in M-phase seem to have high levels of cdc2-kinase, colcemid renders them inactive. From these data, it appears that the down regulation and/or inactivation of cdc2-kinase could be responsible for the colcemid arrest of cells in M-phase.  相似文献   

11.
We developed a redox system for brain-enhanced delivery of estradiol based on an interconvertible dihydropyridine in equilibrium pyridinium salt carrier. Estradiol (E2), when combined with the lipoidal carrier, readily crosses the blood-brain barrier. The carrier, when oxidized, reduces the rate of exit of the estradiol-carrier complex from the brain. Subsequent hydrolysis of the carrier provides sustained production of estradiol in the brain. The aim of the study was to evaluate the effects of single vs. multiple injections of the estradiol-chemical delivery system (E2-CDS) on both central and peripheral estrogen-responsive tissues. Ovariectomized Sprague-Dawley rats received an intravenous injection of E2-CDS at 10, 33, 100 or 333 micrograms/kg BW or the drug vehicle, dimethyl sulfoxide (DMSO; 0.5 ml/kg) every 2 days for 7 injections (2 weeks) or a single injection only at 2 days before sacrifice. With a single injection, E2-CDS did not affect serum luteinizing hormone (LH) levels at the 10 micrograms/kg dose but caused a dose-dependent reduction in serum LH of 39-52% at the dose range of 33 to 333 micrograms/kg. By contrast, multiple injections of E2-CDS caused a 32 to 76% reduction in serum LH levels at doses ranging from 10 micrograms/kg to 333 micrograms/kg. Additionally, multiple doses of E2-CDs caused a dose-dependent reduction in body weight at the 10 and 33 micrograms/kg doses with the higher doses causing no further weight reduction. For both single and multiple dosage groups, serum E2 levels remained unchanged after doses of E2-CDS of 10 and 33 micrograms/kg, then increased to 21 pg/ml for the single dosage group and to 23 pg/ml for the multiple dosage group at the 100 micrograms/kg dose, and to 59 pg/ml for singly-injected rats and 60 pg/ml for multiply-injected rats at the 333 micrograms/kg dose. Serum prolactin concentrations were closely correlated with serum E2 levels for both the single and multiple dose groups. These data reveal that a single or multiple doses of E2-CDS can reduce serum LH levels without elevating serum E2 or prolactin concentrations, supporting the concept of brain-enhanced delivery of estradiol with an estradiol chemical delivery system.  相似文献   

12.
球形芽孢杆菌TS—1原生质体电诱导质粒转化研究   总被引:3,自引:0,他引:3  
This report gave the best conditions of Bacillus sphaericus Ts-1 protoplast-plasmid pHV33 electroporation. The highest transformation frequency and transformation efficiency induced by three pulse of 21 KV/cm and 10 microseconds duration applied at an interval of one sec., was 2.44 x 10(2) transformants/micrograms DNA and 3.16 x 10(-6) respectively. The saturated concentration of DNA absorbed by the protoplast was 5 micrograms DNA/10(9) cells/ml. By means of this method, pJB417, a recombinant mosquito larvicide clone, was introduced into B. subtilis 168M and B. sphaericus Ts-1. The transformants of B. subtilis 168M with biocide activity were obtained, but the toxicity of B. sphaericus Ts-1 was not increased.  相似文献   

13.
Five distinct patterns of DNA replication have been identified during S-phase in asynchronous and synchronous cultures of mammalian cells by conventional fluorescence microscopy, confocal laser scanning microscopy, and immunoelectron microscopy. During early S-phase, replicating DNA (as identified by 5-bromodeoxyuridine incorporation) appears to be distributed at sites throughout the nucleoplasm, excluding the nucleolus. In CHO cells, this pattern of replication peaks at 30 min into S-phase and is consistent with the localization of euchromatin. As S-phase continues, replication of euchromatin decreases and the peripheral regions of heterochromatin begin to replicate. This pattern of replication peaks at 2 h into S-phase. At 5 h, perinucleolar chromatin as well as peripheral areas of heterochromatin peak in replication. 7 h into S-phase interconnecting patches of electron-dense chromatin replicate. At the end of S-phase (9 h), replication occurs at a few large regions of electron-dense chromatin. Similar or identical patterns have been identified in a variety of mammalian cell types. The replication of specific chromosomal regions within the context of the BrdU-labeling patterns has been examined on an hourly basis in synchronized HeLa cells. Double labeling of DNA replication sites and chromosome-specific alpha-satellite DNA sequences indicates that the alpha-satellite DNA replicates during mid S-phase (characterized by the third pattern of replication) in a variety of human cell types. Our data demonstrates that specific DNA sequences replicate at spatially and temporally defined points during the cell cycle and supports a spatially dynamic model of DNA replication.  相似文献   

14.
The double-pulse labeling technique for DNA fiber autoradiography was applied to epidermal cells from normal human skin and from human basal cell carcinoma (BCC). We aimed to measure the size and replication rate of the replication unit (RU) for both types of cell and to account, from these results, for our previous observation of a near doubling of S-phase duration in BCC, compared with normal skin. The mean RU size was 76 +/- 4 micron in BCC, not significantly different from the 68 +/- 6 micron value found in normal skin, so the mean of those two values (i.e., 72 micron), was used in further calculations. The rate of replication fork progression was 0.59 +/- 0.005 micron/min in the normal epidermis and 0.33 +/- 0.03 micron/min in BCC, corresponding to a replication time of the average RU equal to 61 min and 109 min, respectively. Thus, with an unchanged RU size in BCC, the observed 1.8-fold decrease in the rate of fork progression in the tumor can account entirely for our previous observation of a 1.8-fold increase in S-phase duration in this tumor, without requiring the assumption of any change in the temporal organization of DNA synthesis in the malignant cells. Considering S phase as an ordered process in which a major part, if not all, of the genome replicates at genetically determined times, we suggest that the clusters of replication units are, in turn, organized into temporally defined "sets". These sets are composed of all the clusters (whatever their chromosomal location) that are programmed to initiate replication during the same fraction of the S period. This hypothesis implies that DNA synthesis in a given set is triggered by some event coupled to progression of replication in the immediately preceding set. Based on a S-phase duration of 10.2 hours in normal skin and of 19.2 hours in BCC (our previous data), and assuming perfect synchrony and homogeneity of the clusters within each set and of each cluster's constitutive RUs, the minimum number of sequentially replicating sets, in both instances, can be estimated as roughly equal to 10.  相似文献   

15.
The effects of ultraviolet light (UV) irradiation on the rate of DNA replication in synchronized Chinese hamster ovary (CHO) cells were investigated. A technique for measuring semiconservative DNA replication was employed that involved growing the cells in medium containing 5-bromodeoxyuridine and subsequently determining the amount of DNA that acquired hybrid buoyant density in CsCl density gradients. One of the advantages of this technique was that it allowed a characterization of the extent of DNA replication as well as rate after irradiation. It was found that while there was a dose-dependent reduction in the rate of DNA replication following UV-irradiation, doses of up to 10 J/m2 (which produce many dimers per replication) did not prevent the ultimate replication of the entire genome. Hence, we conclude that dimers cannot be absolute blocks to DNA replication. In order to account for the total genome replication observed, a mechanism must exist that allows genome replication between dimers. The degree of reduction in the rate of replication by UV was the same whether the cells were irradiated at the G1-S boundary or 1 h into S-phase. Previous work had shown that cells in early S-phase are considerably more sensitive to UV than cells at the G1-S boundary. Experiments specifically designed to test for reiterative replication showed that UV does not induce a second round of DNA replication within the same S-phase.  相似文献   

16.
Ultraviolet A (UVA) radiation represents more than 90% of the UV spectrum reaching Earth's surface. Exposure to UV light, especially the UVA part, induces the formation of photoexcited states of cellular photosensitizers with subsequent generation of reactive oxygen species (ROS) leading to damages to membrane lipids, proteins and nucleic acids. Although UVA, unlike UVC and UVB, is poorly absorbed by DNA, it inhibits cell cycle progression, especially during S-phase. In the present study, we examined the role of the DNA damage checkpoint response in UVA-induced inhibition of DNA replication. We provide evidence that UVA delays S-phase in a dose dependent manner and that UVA-irradiated S-phase cells accumulate in G2/M. We show that upon UVA irradiation ATM-, ATR- and p38-dependent signalling pathways are activated, and that Chk1 phosphorylation is ATR/Hus1 dependent while Chk2 phosphorylation is ATM dependent. To assess for a role of these pathways in UVA-induced inhibition of DNA replication, we investigated (i) cell cycle progression of BrdU labelled S-phase cells by flow cytometry and (ii) incorporation of [methyl-(3)H]thymidine, as a marker of DNA replication, in ATM, ATR and p38 proficient and deficient cells. We demonstrate that none of these pathways is required to delay DNA replication in response to UVA, thus ruling out a role of the canonical S-phase checkpoint response in this process. On the contrary, scavenging of UVA-induced reactive oxygen species (ROS) by the antioxidant N-acetyl-l-cystein or depletion of vitamins during UVA exposure significantly restores DNA synthesis. We propose that inhibition of DNA replication is due to impaired replication fork progression, rather as a consequence of UVA-induced oxidative damage to protein than to DNA.  相似文献   

17.
Upon DNA damage, replication is inhibited by the S-phase checkpoint. ATR (ataxia telangiectasia mutated- and Rad3-related) is specifically involved in the inhibition of replicon initiation when cells are treated with DNA damage-inducing agents that stall replication forks, but the mechanism by which it acts to prevent replication is not yet fully understood. We observed that RPA2 is phosphorylated on chromatin in an ATR-dependent manner when replication forks are stalled. Mutation of the ATR-dependent phosphorylation sites in RPA2 leads to a defect in the down-regulation of DNA synthesis following treatment with UV radiation, although ATR activation is not affected. Threonine 21 and serine 33, two residues among several phosphorylation sites in the amino terminus of RPA2, are specifically required for the UV-induced, ATR-mediated inhibition of DNA replication. RPA2 mutant alleles containing phospho-mimetic mutations at ATR-dependent phosphorylation sites have an impaired ability to associate with replication centers, indicating that ATR phosphorylation of RPA2 directly affects the replication function of RPA. Our studies suggest that in response to UV-induced DNA damage, ATR rapidly phosphorylates RPA2, disrupting its association with replication centers in the S-phase and contributing to the inhibition of DNA replication.  相似文献   

18.
The effect of actinomycin D on adenovirus DNA replication has been examined both in vivo and in a cell-free extract capable of replication on exogenously added template. In both cases we show that 5 micrograms/ml of drug cause an inhibition of DNA synthesis of at least 80%. The in vitro results further demonstrate that both DNA chain growth (elongation) and initiation - the addition of the first nucleotide of the DNA chain (dCMP) to the preterminal protein - are inhibited directly by the drug, by not by alpha-amanitin.  相似文献   

19.
A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.  相似文献   

20.
The S-phase checkpoint activated at replication forks coordinates DNA replication when forks stall because of DNA damage or low deoxyribonucleotide triphosphate pools. We explore the involvement of replication forks in coordinating the S-phase checkpoint using dun1Delta cells that have a defect in the number of stalled forks formed from early origins and are dependent on the DNA damage Chk1p pathway for survival when replication is stalled. We show that providing additional origins activated in early S phase and establishing a paused fork at a replication fork pause site restores S-phase checkpoint signaling to chk1Delta dun1Delta cells and relieves the reliance on the DNA damage checkpoint pathway. Origin licensing and activation are controlled by the cyclin-Cdk complexes. Thus, oncogene-mediated deregulation of cyclins in the early stages of cancer development could contribute to genomic instability through a deficiency in the forks required to establish the S-phase checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号