首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop two new types of models for whole-genome radiation hybrid mapping using the general multipoint framework. The first, selected locus models, are appropriate for mapping markers in the region of a selectable locus that was used in creation of the hybrids. The models allow for strong retention of the selectable locus, with retention rates decreasing with increasing distance from the selectable locus in both directions. We illustrate the application of these models with 10 chromosome 17 sequence-tagged site (STS) markers and the thymidine kinase (TK) locus typed on a whole-genome hybrid panel in which TK was used in the selection process. The second set of models are appropriate when loci typed on two or more independent panels are to be used to build maps. Maps can be built assuming interlocus distances are independent or proportional between the panels, and the hypothesis of proportional distances can be tested. We illustrate the application of these models by using 27 chromosome 21 STS markers typed on two hybrid panels created with radiation doses of approximately 10,000 and approximately 50,000 Rads.  相似文献   

2.
Radiation hybrid (RH) mapping, a somatic cell genetic technique, has been developed in animal systems as a general approach for the construction of long-range physical maps of chromosomes. This statistical method relies on X-ray induced breakage of chromosomes to determine the physical distance between markers, as well as their order on the chromosome. The method can be applied to single chromosomes or across the whole genome. The generation of plant (barley) radiation hybrids and their culture in vitro is described here. PCR-based marker systems are used to verify hybrid status and to demonstrate genome coverage. RH panels of the type generated can be used for physical mapping, map-based cloning, or sequence contig assembly. RH resources will greatly aid the physical characterisation of crop plants with large genomes.  相似文献   

3.
We have constructed a high-resolution physical map of the long arm of human chromosome 13 using a panel of 94 radiation hybrids. A comprehensive map of 95 chromosome 13-specific sequence tagged sites (STSs) spanning 13q from the presumed centromere at D13Z1 to the known telomere was obtained by multipoint maximum likelihood statistical methods. The 95 markers have an average retention frequency of 10%, with markers closer to the centromere having much greater retention frequencies (22-49%) than distal 13q markers (2-12%) The most likely radiation hybrid map localized the 95 STSs into 54 unique map positions, 34 with odds of 1000:1 or greater; the comprehensive map localized all but 17 STSs with odds exceeding 10:1. The total map length of 13q was 1302 cR9000 (range 6.4-94.4 cR9000) and a physical distance of 98 Mb, so that 1% breakage in the RH panel corresponds to 75 kb. A comparison of the comprehensive RH map to genetic maps of chromosome 13q shows identical locus orders for the common markers, with two exceptions over 1-cM distances. We discuss the possible relationships between the genetic and the radiation hybrid maps.  相似文献   

4.
Ptak SE  Voelpel K  Przeworski M 《Genetics》2004,167(1):387-397
An ability to predict levels of linkage disequilibrium (LD) between linked markers would facilitate the design of association studies and help to distinguish between evolutionary models. Unfortunately, levels of LD depend crucially on the rate of recombination, a parameter that is difficult to measure. In humans, rates of genetic exchange between markers megabases apart can be estimated from a comparison of genetic and physical maps; these large-scale estimates can then be interpolated to predict LD at smaller ("local") scales. However, if there is extensive small-scale heterogeneity, as has been recently proposed, local rates of recombination could differ substantially from those averaged over much larger distances. We test this hypothesis by estimating local recombination rates indirectly from patterns of LD in 84 genomic regions surveyed by the SeattleSNPs project in a sample of individuals of European descent and of African-Americans. We find that LD-based estimates are significantly positively correlated with map-based estimates. This implies that large-scale, average rates are informative about local rates of recombination. Conversely, although LD-based estimates are based on a number of simplifying assumptions, it appears that they capture considerable information about the underlying recombination rate or at least about the ordering of regions by recombination rate. Using LD-based estimators, we also find evidence for homologous gene conversion in patterns of polymorphism. However, as we demonstrate by simulation, inferences about gene conversion are unreliable, even with extensive data from homogeneous regions of the genome, and are confounded by genotyping error.  相似文献   

5.
The current genetic and recombination maps of the cat have fewer than 3,000 markers and a resolution limit greater than 1 Mb. To complement the first-generation domestic cat maps, support higher resolution mapping studies, and aid genome assembly in specific areas as well as in the whole genome, a 15,000(Rad) radiation hybrid (RH) panel for the domestic cat was generated. Fibroblasts from the female Abyssinian cat that was used to generate the cat genomic sequence were fused to a Chinese hamster cell line (A23), producing 150 hybrid lines. The clones were initially characterized using 39 short tandem repeats (STRs) and 1,536 SNP markers. The utility of whole-genome amplification in preserving and extending RH panel DNA was also tested using 10 STR markers; no significant difference in retention was observed. The resolution of the 15,000(Rad) RH panel was established by constructing framework maps across 10 different 1-Mb regions on different feline chromosomes. In these regions, 2-point analysis was used to estimate RH distances, which compared favorably with the estimation of physical distances. The study demonstrates that the 15,000(Rad) RH panel constitutes a powerful tool for constructing high-resolution maps, having an average resolution of 40.1 kb per marker across the ten 1-Mb regions. In addition, the RH panel will complement existing genomic resources for the domestic cat, aid in the accurate re-assemblies of the forthcoming cat genomic sequence, and support cross-species genomic comparisons.  相似文献   

6.
A physical map of 4q35 was constructed through radiation hybrid analysis of 134 clones generated from the cell line HHW416, a chromosome 4-only human-hamster somatic cell hybrid. This subtelomeric region contains the as-yet-unidentified gene responsible for facioscapulohumeral muscular dystrophy. The most likely order of 15 loci within 4q35 was determined. The loci ordered on this radiation hybrid map include both genes and polymorphic loci, as well as monomorphic loci which cannot be placed on a genetic linkage map. The physical distance spanning these loci was estimated to be approximately 4.5 Mb, by using a kilobase/centiray conversion factor derived from 4p16.3 marker analysis through the same set of radiation hybrids. The comparison of this physical map to establish genetic maps suggests that this region is smaller than initially estimated and that recombination rates are increased near the telomere.  相似文献   

7.
Methods are described for the optimisation of the generation of radiation hybrids suitable for physical mapping of a plant (barley) genome. A combination of PCR-based technologies, involving the use of whole genome, mixed primer and hemi-nested primer amplifications, can greatly extend their utility for the physical mapping of expressed sequence tags (ESTs). Using panels of hybrids and ESTs, donor DNA retention and individual marker retention frequencies for the expressed portion of the barley genome in the hybrids were estimated.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by P. Langridge  相似文献   

8.
Radiation hybrid (RH) mapping is a powerful method for ordering loci on chromosomes and for estimating the distances between them. RH mapping is currently used to construct both framework maps, in which all markers are ordered with high confidence (e.g., 1,000:1 relative maximum likelihood), and comprehensive maps, which include markers with less-confident placement. To deal with uncertainty in the order and location of markers, marker positions may be estimated conditional on the most likely marker order, plausible intervals for nonframework markers may be indicated on a framework map, or bins of markers may be constructed. We propose a statistical method for estimating marker position that combines information from all plausible marker orders, gives a measure of uncertainty in location for each marker, and provides an alternative to the current practice of binning. Assuming that the prior distribution for the retention probabilities is uniform and that the marker loci are distributed independently and uniformly on an interval of specified length, we calculate the posterior distribution of marker position for each marker. The median or mean of this distribution provides a point estimate of marker location. An interval estimate of marker location may be constructed either by using the 100(alpha/2) and 100(1-alpha)/2 percentiles of the distribution to form a 100(1-alpha) % posterior credible interval or by calculating the shortest 100(1-alpha) % posterior credible interval. These point and interval estimates take into account ordering uncertainty and do not depend on the assumption of a particular marker order. We evaluate the performance of the estimates on the basis of results from simulated data and illustrate the method with two examples.  相似文献   

9.
Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies.  相似文献   

10.
MOTIVATION: Radiation Hybrid Mapping (RHM) is a technique used to order a set of markers on a genome and estimating physical distances between them. RHM provides information on marker placement independent from other methods such as sequencing, and can therefore be used for example in genome sequencing to help ordering contigs. A radiation hybrid framework can be constructed by choosing a set of markers so that the chromosome coverage is good and so that the markers can be ordered with high confidence. Automatically constructing RHM frameworks is a computationally challenging problem. RESULTS: We have developed a new method for constructing radiation hybrid frameworks. Given a relatively large set of markers for a chromosome, the algorithm aims to select an ordered subset that makes up a framework, and that contains as many markers as possible. The algorithm has a time complexity that is better than any of the existing methods that we are aware of. Furthermore, we propose a method for comparing if two frameworks are consistent, giving a visual presentation as well as quantitative measures of how well the two frameworks agree. Applying our method on marker sets from 22 human chromosomes and comparing the resulting frameworks with previously published frameworks, we demonstrate that our automatic method efficiently constructs frameworks with good coverage of each chromosome and with high degree of agreement on the marker ordering.  相似文献   

11.
Many small organisms in various life stages can be transported in the digestive system of larger vertebrates, a process known as endozoochory. Potential dispersal distances of these "propagules" are generally calculated after monitoring retrieval in experiments with resting vector animals. We argue that vectors in natural situations will be actively moving during effective transport rather than resting. We here test for the first time how physical activity of a vector animal might affect its dispersal efficiency. We compared digestive characteristics between swimming, wading (i.e. resting in water) and isolation (i.e. resting in a cage) mallards (Anas platyrhynchos). We fed plastic markers and aquatic gastropods, and monitored retrieval and survival of these propagules in the droppings over 24?h. Over a period of 5?h of swimming, mallards excreted 1.5 times more markers than when wading and 2.3 times more markers than isolation birds, the pattern being reversed over the subsequent period of monitoring where all birds were resting. Retention times of markers were shortened for approximately 1?h for swimming, and 0.5?h for wading birds. Shorter retention times imply higher survival of propagules at increased vector activity. However, digestive intensity measured directly by retrieval of snail shells was not a straightforward function of level of activity. Increased marker size had a negative effect on discharge rate. Our experiment indicates that previous estimates of propagule dispersal distances based on resting animals are overestimated, while propagule survival seems underestimated. These findings have implications for the dispersal of invasive species, meta-population structures and long distance colonization events.  相似文献   

12.
Tan YD  Fornage M 《Genetica》2008,133(3):235-246
Accurate estimation of map distance between markers is important for the construction of large-scale linkage maps because it provides reliable and useful linkage information of markers on chromosomes. How to improve accuracy of estimating map distances depends on an appropriate mapping function. We used the coefficient of coincidence to integrate the Haldane function, in which crossovers are assumed to be independent and the Morgan function, in which crossovers are assumed to be interfered, and produce a new mapping function. The mapping function based on positive interference is referred to as the positive function and that on negative interference as the negative function. In these two mapping functions, map distances between loci are determined by both recombination frequencies and the coefficient of coincidence. We applied our mapping functions to four examples and show that our map estimates have much higher goodness-of-fit to the observed mapping data than the Haldane and Kosambi functions. Therefore, they can provide much more precise estimates of map distances than the two conventional mapping functions. Furthermore, our mapping functions produced almost linear (additive) map distances.  相似文献   

13.
Conventional methods for chromosomal mapping in Escherichia coli are (i) interruption of matings to obtain minimum marker entry times, (ii) linkage analysis of recombinants, and (iii) cotransduction. Method (i) has a resolution of about 0.5 min (5 x 10(4) nucleotides) and is not useful for distances less than about 1 min; methods (ii) and (iii) are capable of better resolution but are generally not very reproducible and no general theory is available for translating crossing-over and cotransduction frequencies into physical chromosomal distances. We found that when merozygotes are irradiated (X rays or ultraviolet light) soon after marker transfer, high linkage values (0.8 to 1.0) between nearby marker pairs decrease with radiation dose to 0.5. Our results are quantitatively consistent with the idea that radiations induce crossing-over lesions proportional to dose, and the number of such lesions between two markers is proportional to the physical separation of the markers in the range that can also be measured by interruption of mating (0.5 to 4.0 min). Additivity relations among markers are also satisfied. We used this technique to measure the distances (0.1 to 1.0 min) between several pairs of closely linked markers.  相似文献   

14.
With the widespread availability of SNP genotype data, there is great interest in analyzing pedigree haplotype data. Intermarker linkage disequilibrium for microsatellite markers is usually low due to their physical distance; however, for dense maps of SNP markers, there can be strong linkage disequilibrium between marker loci. Linkage analysis (parametric and nonparametric) and family-based association studies are currently being carried out using dense maps of SNP marker loci. Monte Carlo methods are often used for both linkage and association studies; however, to date there are no programs available which can generate haplotype and/or genotype data consisting of a large number of loci for pedigree structures. SimPed is a program that quickly generates haplotype and/or genotype data for pedigrees of virtually any size and complexity. Marker data either in linkage disequilibrium or equilibrium can be generated for greater than 20,000 diallelic or multiallelic marker loci. Haplotypes and/or genotypes are generated for pedigree structures using specified genetic map distances and haplotype and/or allele frequencies. The simulated data generated by SimPed is useful for a variety of purposes, including evaluating methods that estimate haplotype frequencies for pedigree data, evaluating type I error due to intermarker linkage disequilibrium and estimating empirical p values for linkage and family-based association studies.  相似文献   

15.
16.
DNA marker maps based on single populations are the basis for gene, loci and genomic analyses. Individual maps can be integrated to produce composite maps with higher marker densities if shared marker orders are consistent. However, estimates of marker order in composite maps must include sets of markers that were not polymorphic in multiple populations. Often some of the pooled markers were not codominant, or were not correctly scored. The soybean composite map was composed of data from five separate populations based on northern US germplasm but does not yet include ‘Essex’ by ‘Forrest’ recombinant inbred line (RIL) population (E × F) or any southern US soybean cultivars. The objectives were, to update the E × F map with codominant markers, to compare marker orders among this map, the Forrest physical map and the composite soybean map and to compare QTL identified by composite interval maps to the earlier interval maps. Two hundred and thirty seven markers were used to construct the core of the E × F map. The majority of marker orders were consistent between the maps. However, 19 putative marker inversions were detected on 12 of 20 linkage groups (LG). Eleven marker distance compressions were also found. The number of inverted markers ranged from 1 to 2 per LG. Thus, marker order inversions may be common in southern compared to northern US germplasm. A total of 61 QTL among 37 measures of six traits were detected by composite interval maps, interval maps and single point analysis. Seventeen of the QTL found in composite intervals had previously been detected among the 29 QTL found in simple interval maps. The genomic locations of the known QTL were more closely delimited. A genome sequencing project to compare Southern and Northern US soybean cultivars would catalog and delimit inverted regions and the associated QTL. Gene introgression in cultivar development programs would be accelerated.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

17.
Although Phalaenopsis orchids are among the most economically important potted plants, little is known about either the genetic diversity among varieties or the genetic complexity of key ornamental traits. Therefore, we analysed the genetic diversity of a broad collection of Phalaenopsis varieties and selected wild species by means of molecular markers. The marker data were used to obtain genetic distances, estimates of the degree of linkage disequilibrium and population structure for the genotypes under study. With a total of 492 markers, the genotypes clustered according to their horticultural classification (for example, old hybrids vs. more recent hybrids) but not according to their origin, indicating extensive exchange of germplasm among breeders. Linkage disequilibrium was found to decrease relatively slowly, most likely due to the small number of generations that have occurred since the first hybrids were generated. Based on the most likely estimates for the population structure (ranging from 10 to 12 subpopulations), associations between ornamental traits like flower size, flower colour, flower type, flower texture, stem length and leaf shape were calculated. These results can now serve as starting points for detailed analyses of the genetic architecture of these traits.  相似文献   

18.
C. G. Williams  M. M. Goodman    C. W. Stuber 《Genetics》1995,141(4):1573-1581
Recombination distances and linkage heterogeneity were compared among a wide range of maize inbreds, wide crosses and maize X teosinte hybrids. Twelve maize and four teosinte races were backcrossed to stocks fixed for rare marker alleles on chromosome arm 1L. Recombination fraction estimates were higher for exotic germplasm than for either U.S. maize or maize X teosinte crosses. Serrano, Tuxpeno and a US-adapted inbred line of tropical origin, NC300, exhibited enhanced recombination. Three of the four maize X teosinte hybrids had little or no recombination between two loci. The observed recombination ``shrinkage' resulted from an apparent inversion in the vicinity of the Amp1 locus. Average recombination distances among common marker loci for composite maps were highly variable, even when map construction was restricted to maize germplasm of similar origins.  相似文献   

19.
We have constructed a radiation hybrid (RH) map of chicken chromosome (GGA) 15. This map can be used as a resource to efficiently map genes to this chromosome. The map has been developed using a 6000 rad chicken-hamster whole-genome radiation hybrid panel (ChickRH6). In total, six microsatellite loci, 18 sequence tagged sites (STSs) from BAC end sequences and 11 genes were typed on the panel. The initial framework map comprised eight markers, and an additional 23 markers were then added to generate the final map. The total map length was 334 centiRay6000 (cR6000). The estimated retention frequency for the data set was 18%. Using an estimated physical length of 21 Mb, the ratio between cR6000 and physical distance over GGA15 was estimated to be 0.063 Mb/cR6000. The present map increases the marker density and the marker resolution on GGA15 and enables fast mapping of new chicken genes homologous to genes from human chromosomes 12 and 22.  相似文献   

20.
Statistical methods for multipoint radiation hybrid mapping.   总被引:22,自引:5,他引:17       下载免费PDF全文
On the basis of the earlier work of Goss and Harris, Cox et al. introduced radiation hybrid (RH) mapping, a somatic cell genetic technique for constructing fine-structure maps of human chromosomes. Radiation hybrid mapping uses X-ray breakage of chromosomes to order a set of genetic loci and to estimate distances between them. To analyze RH mapping data Cox et al. derived statistical methods that employ information on sets of two and four loci, to build an overall locus order. Here we describe alternative nonparametric and maximum-likelihood methods for the analysis of RHs that use information on many loci simultaneously, including information on partially typed hybrids. Combination of these multipoint methods provides a statistically more efficient solution to the locus-ordering problem. We illustrate our approach by applying it to RH mapping data on 14 markers in 99 radiation hybrids for the proximal long arm of human chromosome 21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号