首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levels of fructose 6-phosphate and glucose 6-phosphate were measured in chloroplasts which had been isolated non-aqueously from leaves of various plants. a large decrease in the ratio of glucose 6-phosphate to fructose 6-phosphate in the light indicated considerable displacement of the hexosephosphate isomerase reaction from equilibrium in leaves of spinach and red beet which were photosynthesizing at high rates. The decrease in the ratio of glucose 6-phosphate to fructose 6-phosphate was correlated with an increase in the chloroplastic level of 3-phosphoglyceric acid, which proved to be a competitive inhibitor of chloroplast hexosephosphate isomerase. Other metabolites, especially the product of the reaction, glucose 6-phosphate, and ions in concentrations as present in the stroma under natural conditions, cause a further reduction in the rate of the forward reaction of the hexosemonophosphate isomerase. When the concentration of O2 in air was decreased from 21 to 2%, both the rate of leaf photosynthesis and the ratio of glucose 6-phosphate to fructose 6-phosphate increased, whereas the concentration of 3-phosphoglyceric acid and starch synthesis decreased. The results are explained in terms of activation of ADPglucose pyrophosphorylase and of inhibition of hexosephosphate isomerase by 3-phosphoglyceric acid. Hexosephosphate isomerase appears to assume a rate-limiting function in starch synthesis in the light when ADPglucose pyrophosphorylase is activated.  相似文献   

2.
The relationship between catabolism of glycerol and metabolism of hexosephosphate derivatives in Pseudomonas aeruginosa was studied by comparing the growth on glycerol and enzymatic constitution of strain PAO with these characteristics of glucose-catabolic mutants and revertants. Growth of strain PAO on glycerol induced a catabolic oxidized nicotinamide adenine dinucleotide-linked glyceraldehyde-phosphate dehydrogenase and seven glucose-catabolic enzymes. The results indicated that these enzymes were induced by a six-carbon metabolite of glucose. All strains possessed a constitutive anabolic Embden-Meyerhof-Parnas pathway allowing limited conversion of glycerol-derived triosephosphate to hexosephosphate derivatives, which was consistent with induction of these enzymes by glycerol. Phosphogluconate dehydratase-deficient mutants grew on glycerol. However, mutants lacking both phosphogluconate dehydrogenase and phosphogluconate dehydratase were unable to grow on glycerol, although these strains possessed all of the enzymes needed for degradation of glycerol. These mutants apparently were inhibited by hexosephosphate derivatives, which originated from glycerol-derived triosephosphate and could not be dissimilated. This conclusion was supported by the fact that revertants regaining only a limited capacity to degrade 6-phosphogluconate were glycerol positive but remained glucose negative.  相似文献   

3.
The activity of glutamine hexosephosphate aminotransferase (L-glutamine: D-fructose 6-phosphate aminotransferase, EC 2.6.1.16) was determined with an improved assay method in some three dozen rat tissues: adult, developing and neoplastic. The highest activities (20–200 units/g) were seen in colon, mammary (during late lactation), submaxillary, sublingual and parotid glands, placenta and liver. The activity increased strikingly along the length of the intestine; glucose feeding inhibited it in ileum and colon. In liver and intestine the activity increased with age but in brain, muscle, heart and kidney the activity was considerably higher during fetal (7.1–12.8 units/g) than in adult life (0.8–3.5 units/g). Renal, mammary and muscle tumors (but not hepatomas) had much higher activities (4–20.5 units/g) than the cognate normal adult tissue.The distribution pattern among tissues indicates that glutamine hexosephosphate aminotransferase is of general importance to all growing, undifferentiated tissues and of special importance to the differentiated function of particular adult organs. The latter are organs which engage in glycoprotein secretion. The results support the assumption that glutamine hexosephosphate aminotransferase activity is essential for glycoprotein synthesis.  相似文献   

4.
1. The system:hemolyzed blood + glucose never exhibits glycolysis or, in the air, oxidation of glucose. When glucose is replaced by hexosephosphate ester, addition of methylene blue causes oxidation in air. 2. When cozymase is added also, the oxidation is increased, and a synthesis of hexosephosphate esters takes place. 3. When pyocyanine is used instead of methylene blue, the rate of oxidation is the same as with methylene blue, but a synthesis of phosphate esters takes place without addition of cozymase. 4. There is never a phosphate ester synthesis without oxidation going on, but oxidation does not necessarily go hand in hand with phosphate synthesis. 5. In order to couple the oxidation process with phosphate synthesis, two methods are available: either to start oxidation by methylene blue and to add coenzyme from yeast cells; or to start oxidation by pyocyanine, in which case coenzyme is unnecessary, though it improves the effect. 6. Iodoacetate always suppresses synthesis, but only under certain conditions decreases oxidation. Cyanide has no effect upon either process.  相似文献   

5.
Metabolism of various carbon sources by Azospirillum brasilense   总被引:10,自引:9,他引:1       下载免费PDF全文
Azospirillum brasilense Sp7 and two mutants were examined for 19 carbon metabolism enzymes. The results indicate that this nitrogen fixer uses the Entner-Doudoroff pathway for gluconate dissimilation, lacks a catabolic but has an anabolic Embden-Meyerhof-Parnas hexosephosphate pathway, has amphibolic triosephosphate enzymes, lacks a hexose monophosphate shunt, and has lactate dehydrogenase, malate dehydrogenase, and glycerokinase. The mutants are severely deficient in phosphoglycerate and pyruvate kinase and also have somewhat reduced levels of other carbon enzymes.  相似文献   

6.
Based on experiments in cultured adipocytes, it has been proposed that glucose-induced down regulation of glucose transport is mediated by the conversion of fructose-6-phosphate to glucosamine-6-phosphate via the first and rate-determining enzyme of the hexasamine biosynthetic pathway, glutamine: fructose-6-phosphate amidotransferase (glutamine hexosephosphate aminotransferase). Evidence for this assertion was: (a) l-glutamine, the provider group for the aminotransferase was essential; (b) two inhibitors of glutamine hexosephosphate aminotransferase, 6-diazo-5-oxonorleucine (l form) and azaserine, blocked glucose-induced down regulation of glucose transport; (c) azaserine inhibited the activity of the aminotransferase, (d) glucosamine, which enters the hexosamine pathway distal to this enzyme was 40-times more potent than glucose; and (e) azaserine was unable to block the effect of glucosmaine. Since muscle is quantitatively much more important than adipose tissue for whole body glucose utilization, we sought to determine if the hexosamine pathway was involved in glucose-induced down regulation of glucose transport in L6 myotubes. Glucose was effective, both in the presence and absence of glutamine in the incubation media. Glucosamine was also effective but was as equipotent as glucose. Small amounts of glutamine hexosephosphate aminotransferase were present in the L6 myotubes and although the leucine derivative (20 μM)_ inhibited the enzyme, it did not impair glucose-induced down regulation of glucose transport. Total GLUT-1 levels were similar when the cells were incubated in the absence or presence of 5 mM glucose or glucosamine although glucosamine was associated with a marked increase in a lower molecular weight band. These results do not suggest that the hexosamine biosynthetic pathway is involved in glucose-induced down regulation of glucose transport in L6 myotubes. Thus, this phenomenon is regulated differently in muscle and fat.  相似文献   

7.
When soluble extracts from the extreme acidophilic archaeon Sulfolobus solfataricus were incubated with [gamma-32P]ATP, several radiolabeled polypeptides were observed following SDS-PAGE. The most prominent of these migrated with apparent molecular masses of 14, 18, 35, 42, 46, 50, and 79 kDa. Phosphoamino acid analysis revealed that all of the proteins contained phosphoserine, with the exception of the 35-kDa one, whose protein-phosphate linkage proved labile to strong acid. The observed pattern of phosphorylation was influenced by the identity of the divalent metal ion cofactor used, Mg2+ versus Mn2+, and the choice of incubation temperature. The 35- and 50-kDa phosphoproteins were purified and their amino-terminal sequences determined. The former polypeptide's amino-terminal sequence closely matched a conserved portion of the alpha-subunit of succinyl-CoA synthetase, which forms an acid-labile phosphohistidyl enzyme intermediate during its catalytic cycle. This identification was confirmed by the ability of succinate or ADP to specifically remove the radiolabel. The 50-kDa polypeptide's sequence contained a heptapeptide motif, Phe/Pro-Gly-Thr-Asp/Ser-Gly-Val/Leu-Arg, found in a similar position in several hexosephosphate mutases. The catalytic mechanism of these mutases involves formation of a phosphoseryl enzyme intermediate. The identity of p50 as a hexosephosphate mutase was confirmed by (1) the ability of sugars and sugar phosphates to induce removal of the labeled phosphoryl group from the protein, and (2) the ability of [32P]glucose 6-phosphate to donate its phosphoryl group to the protein.  相似文献   

8.
Immature Schistosoma mansoni in mice are less susceptible to antimony therapy than adult worms. KSb tartrate inhibited phosphofructokinase (PFK) (EC 2.7.1.11) to a greater extent in extracts of 3-week-old worms than adults, and inhibited production of lactate in both immature and adult worms in vitro. In vivo, KSb tartrate was accumulated similarly by 3-week-old worms and by adults: measurements of hexosephosphate following drug treatment suggested similar inhibition of PFK in the two worm stages. If antimony acts by inhibition of PFK it is not clear why the young worms are more resistant to chemotherapy than adults.  相似文献   

9.
Huang LS  Romani RJ 《Plant physiology》1991,95(4):1096-1105
To assess the restorative capacity of isolated avocado (Persea americana) fruit mitochondria, the organelles were first aged in the absence of an energy source at 25°C for several hours until respiratory control and oxidative phosphorylation were greatly diminished or totally lost. Energy-linked functions were then gradually restored over a period of several hours after the addition of substrate. Restoration of respiratory control resulted from both an increase in state 3 and a decrease in state 4 respiratory rates. Either α-ketoglutarate or succinate served as restorants, each with distinctive rates of recovery in state 3 and state 4 respiration. ATP also served as a restorative agent but not as effectively as metabolizable substrate. ATP synthase activity was modulated by stress and restoration but neither the extent nor the rate of change was sufficient to constrain state 3 rates. Orthophosphate was released from the mitochondria during substrate-deprived stress. Restoration of phosphorylation preceded that of RC with phosphate uptake and phosphorylation being evident immediately upon the addition of substrate. During restoration [32P]orthophosphate was incorporated into several organic fractions: phospholipid, ATP, a trichloroacetic acid-precipitable mitochondrial fraction, and an organophosphate that accumulated in the medium in relatively large amounts. The organophosphate was tentatively identified as a hexosephosphate. Incorporation into ATP and the putative hexosephosphate continued unabated beyond the point of maximum restoration. Phosphate metabolism thus appears to be a necessary but not sufficient precondition for mitochondrial restoration and maintenance. Based on the recovery kinetics of the various phosphorylated components, the mitochondrial-bound fraction appears to be most directly linked with restoration. Results are discussed with reference to specific characteristics and components of self-restoration and to possible underlying mechanisms. We suggest that a degree of self-restoration is consistent with the quasi-autonomous nature of mitochondria and that this intrinsic capacity may be pivotal to the respiratory climacteric in senescent fruit cells and to cellular homeostasis in general.  相似文献   

10.
Influence of 6-phosphogluconate and 3-phosphoglycerate have been studied for their effect on the fructose-6-phosphate glycolytic transformation reactions in homogenates of the Zajdela hepatoma cells. It is established that 6-phosphogluconate inhibits formation of lactate from fructose-6-phosphate and increases the ratio: dioxyacetone-phosphate/lactate. The influence of 6-phosphogluconate on the formation of lactate from the fructose-1,6-bisphosphate is similar. 3-phosphoglycerate removes the effect of 6-phosphogluconate, its content being unchanged in samples, which indicates rather the regulatory, than the substrate role of 3-phosphoglycerate. Analogous experiments with homogenates of the rat liver show that 6-phosphogluconate inhibits hexosephosphate isomerase, but almost all the introduced substrate (fructose-6-phosphate) is transformed into glucose. Processes of fructose-6-phosphate consumption in the hepatoma and liver are opposite.  相似文献   

11.
Wild-type Pseudomonas acidovorans strain A1 was unable to grow on glycerol or glucose as sole source of carbon and energy although it grew well on gluconate. Spontaneous glycerol-positive mutants, which apparently had become permeable to glycerol, were readily isolated, but glucose-positive mutants did not occur. P. acidovorans lacked glucose dehydrogenase and glucokinase, which were sufficient to account for its inability to grow on glucose. Gluconate was degraded exclusively via a noncoordinately induced Entner-Doudoroff pathway. Phosphogluconate dehydrogenase was undetectable. In contrast to P. aeruginosa, P. acidovorans possessed a single glyceraldehyde-phosphate dehydrogenase activity, which was NAD+ specific and constitutive, and an inducible pyruvate kinase. Moreover, growth of glycerol-positive strain K2 on glycerol did not induce any of the enzymes related to metabolism of hexosephosphate derivatives as occurs in fluorescent pseudomonads.  相似文献   

12.
The phosphoglucosamine mutase (GlmM) from Escherichia coli, specifically required for the interconversion of glucosamine-6-phosphate and glucosamine-1-phosphate (an essential step in the pathway for cell-wall peptidoglycan and lipopolysaccharide biosyntheses) was purified to homogeneity and its kinetic properties were investigated. The enzyme was active in a phosphorylated form and catalysed its reaction according to a classical ping-pong bi-bi mechanism. The dephosphorylated and phosphorylated forms of GlmM could be separated by HPLC and coupled MS showed that only one phosphate was covalently linked to the active site of the enzyme. The site of phosphorylation was clearly identified as Ser102 in the 445-amino acid polypeptide. GlmM was also capable of catalysing the interconversion of glucose-1-phosphate and glucose-6-phosphate isomers, although at a much lower (1400-fold) rate. Interestingly, the mutational change of the Ser100 to a threonine residue resulted in a 20-fold increase of the nonspecific phosphoglucomutase activity of GlmM, suggesting that the presence of either a serine or a threonine at this position in the consensus sequence of hexosephosphate mutases could be one of the factors that determines the specificity of these enzymes for either sugar-phosphate or amino sugar-phosphate substrates.  相似文献   

13.
SYNOPSIS. Hartmannella (Culbertson strain A-1) was found to undergo encystment (80–90% in 72 hr) on a non-nutrient agar containing 0.015 M MgCl2 and 0.02 M taurine. Encystment was completely inhibited by 1 × 10?5 M Mitomycin C, or 1 × 10?7 M cycloheximide or 1 × 10?6 M Actinomycin D. The ability of the amoebae to consume glucose increased fourfold within 24 hr incubation in this medium. The specific activities of cellulose synthetase, hexosephosphate transaminase and uridine diphosphosphoglucose pyrophosphorylase were also stimulated. Dehydrogenases mediating electron transfer from pyruvate, malate, succinate, α-ketoglutarate and α-glycerophosphate to triphenyltetrazolium and from glucose-6-phosphate to nicotinamide-adenine dinucleotide phosphate were, however, repressed during this period of incubation in the encystment medium. The results suggested that, during encystment of Hartmannella A-1, there was a metabolic switchover and the enzyme machinery of the amoeba was oriented more towards biosynthesis of cyst wall constituents than towards the aerobic breakdown of carbohydrates.  相似文献   

14.
重组巴氏毕赤酵母恒化培养动力学及代谢迁移特性研究   总被引:5,自引:0,他引:5  
通过对甲醇营养型毕赤酵母基因工程菌以碳源甘油为限制性基质进行恒化培养动力学试验 ,结果认为 :(1 )细胞光密度与其干、湿重呈线性关系 ,当细胞光密度 (OD60 0 )为 1 0 0时细胞湿重 (WCW)为 1 2 8 3g L ,细胞干重 (WDW)则为 2 2 9g L ;(2 )基因工程菌P .pastoris的生长与限制性基质甘油残留浓度的关系符合Monod关系式 ,通过 1 μ对 1 S进行线性回归得 μmax=0 .366h- 1,Ks=0 .1 82 3g L ,经参数推导甘油最大菌体得率系数YG =0 .54g g ,菌体维持生长消耗底物系数m =0 .0 0 69g (g·h) ;氧最大菌体系数YX O2 =30 .96g moL ,菌体维持生长时消耗氧系数mO2 =0 .0 0 0 8mol (g·h) ,最适理论稀释速率Dm =0 .341h- 1;(3)从氨水的消耗速率和呼吸商 (RQ)的变化认为随着比生长速率 (μ)的增大 ,甘油代谢流从糖原异生和磷酸戊糖途径线性地向糖酵解和三羧酸循环途径进行代谢迁移 ,即糖酵解和三羧酸循环途径的代谢流量在线性地增大  相似文献   

15.
Applying basic biochemical principles, this review analyzes data that contrasts with the Warburg hypothesis that glycolysis is the exclusive ATP provider in cancer cells. Although disregarded for many years, there is increasing experimental evidence demonstrating that oxidative phosphorylation (OxPhos) makes a significant contribution to ATP supply in many cancer cell types and under a variety of conditions. Substrates oxidized by normal mitochondria such as amino acids and fatty acids are also avidly consumed by cancer cells. In this regard, the proposal that cancer cells metabolize glutamine for anabolic purposes without the need for a functional respiratory chain and OxPhos is analyzed considering thermodynamic and kinetic aspects for the reductive carboxylation of 2-oxoglutarate catalyzed by isocitrate dehydrogenase. In addition, metabolic control analysis (MCA) studies applied to energy metabolism of cancer cells are reevaluated. Regardless of the experimental/environmental conditions and the rate of lactate production, the flux-control of cancer glycolysis is robust in the sense that it involves the same steps: glucose transport, hexokinase, hexosephosphate isomerase and glycogen degradation, all at the beginning of the pathway; these steps together with phosphofructokinase 1 also control glycolysis in normal cells. The respiratory chain complexes exert significantly higher flux-control on OxPhos in cancer cells than in normal cells. Thus, determination of the contribution of each pathway to ATP supply and/or the flux-control distribution of both pathways in cancer cells is necessary in order to identify differences from normal cells which may lead to the design of rational alternative therapies that selectively target cancer energy metabolism.  相似文献   

16.
Images of chlorophyll-a-fluorescence oscillations were recorded using a camera-based fluorescence imaging system. Oscillations with frequencies around 1 per min were initiated by a transient decrease in light intensity during assimilation at an elevated CO2-concentration. The oscillation was inhomogenously distributed over the leaf. In cells adjacent to minor veins, frequency and damping rate was high, if there was any oscillation. In contrast, the amplitude was highest in cells most distant from phloem elements (maximal distance about 300 m). The appearance of minor veins in oscillation images is explained by a gradient in the metabolic control in the mesophyll between minor veins and by transport of sugar from distant cells to phloem elements. The potential of fluorescence imaging to visualize microscopic source-sink interactions and metabolic domains in the mesophyll is discussed.Abbreviations Pi inorganic phosphate - Fru2,6BP fructose-2,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - SPS sucrose-phosphate synthetase - HP hexosephosphate  相似文献   

17.
The proplastid fraction containing no cytosol and mitochondrionwas isolated from developing castor bean endosperm by stepwisesucrose density centrifugation. This fraction possesses thecapacity to synthesize LFAs from [u-14C]sucrose, [u-14C]-glucose,[u-14C]G-1-P, [u-14C]G-6-P, [2-14C]pyruvate and [1-14C]acetate.Little was incorporated from [1-14C]pyruvate into LFAs, butmuch into 14COa. Addition of cytosol to the proplastid fractiondid not enhance the LFA synthesis. From these data, the wholepath from sucrose to LFAs through glycolytic path and pyruvatedecarboxylation seems to be located within the proplastid indeveloping castor bean endosperm. The difference in utilizationof substrates indicates that the rate of LFA synthesis in castorbean proplastids is limited at a step between sucrose and hexosephosphate. In addition, experiments with CO2 output and LFAsynthesis from [1-14C]glucose, [6-14C]glucose and [u-14C]G-6-Pstrongly suggest that the path flow branches actively throughG-6-P to the pentose phosphate path and little through acetylCoAto the TCA cycle. (Received May 12, 1975; )  相似文献   

18.
Chlorobium limicola has been proposed to assimilate CO2 autotrophically via a reductive tricarboxylic acid cycle rather than via the Calvin cycle. This proposal has been a matter of considerable controversy. In order to determine which pathway is operative, the bacterium was grown on a mineral salts medium with CO2 as the main carbon source supplemented with specifically labeled 14C-pyruvate, and the incorporation of 14C into alanine (intracellular pyruvate), aspartate (oxaloacetate), glutamate (-ketoglutarate), and glucose (hexosephosphate) was measured in exponentially growing cells in long term labeling experiments. During growth in presence of pyruvate, 20% of the cell carbon were derived from pyruvate in the medium, 80% from CO2. Since pyruvate was not oxidized to CO2, only those compounds should become labeled which were synthesized from CO2 via pyruvate.The three amino acids and glucose were found to be labeled. Alanine had one fifth the specific radioactivity of the extracellular pyruvate, indicating that 20% of the intracellular pyruvate pool were derived from pyruvate in the medium, 80% were synthesized from CO2. Glucose had twice the specific radioactivity of alanine, showing that hexosephosphate synthesis from CO2 proceeded via the pyruvate pool. The latter finding is not consistent with the operation of the Calvin cycle, in which pyruvate is not an intermediate. The specific radioactivities of aspartate (oxaloacetate) and of glutamate (-ketoglutarate) were practically identical but considerably lower than that of alanine ( intracellular pyruvate). These findings are compatible with the operation of a reductive tricarboxylic acid cycle as mechanism of autotrophic CO2 fixation. Degradation studies of the cell components support this interpretation. Offprint requests to: G. Fuchs  相似文献   

19.
20.
Control analysis of the glycolytic flux was carried out in two fast-growth tumor cell types of human and rodent origin (HeLa and AS-30D, respectively). Determination of the maximal velocity (V(max)) of the 10 glycolytic enzymes from hexokinase to lactate dehydrogenase revealed that hexokinase (153-306 times) and phosphofructokinase-1 (PFK-1) (22-56 times) had higher over-expression in rat AS-30D hepatoma cells than in normal freshly isolated rat hepatocytes. Moreover, the steady-state concentrations of the glycolytic metabolites, particularly those of the products of hexokinase and PFK-1, were increased compared with hepatocytes. In HeLa cells, V(max) values and metabolite concentrations for the 10 glycolytic enzyme were also significantly increased, but to a much lesser extent (6-9 times for both hexokinase and PFK-1). Elasticity-based analysis of the glycolytic flux in AS-30D cells showed that the block of enzymes producing Fru(1,6)P2 (i.e. glucose transporter, hexokinase, hexosephosphate isomerase, PFK-1, and the Glc6P branches) exerted most of the flux control (70-75%), whereas the consuming block (from aldolase to lactate dehydrogenase) exhibited the remaining control. The Glc6P-producing block (glucose transporter and hexokinase) also showed high flux control (70%), which indicated low flux control by PFK-1. Kinetic analysis of PFK-1 showed low sensitivity towards its allosteric inhibitors citrate and ATP, at physiological concentrations of the activator Fru(2,6)P2. On the other hand, hexokinase activity was strongly inhibited by high, but physiological, concentrations of Glc6P. Therefore, the enhanced glycolytic flux in fast-growth tumor cells was still controlled by an over-produced, but Glc6P-inhibited hexokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号