首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sodium hydrosulfide (NaHS), the donor of hydrogen sulfide (H2S), on the exo/endocytosis cycle of synaptic vesicles in the motor nerve ending of the mouse diaphragm were studied using intracellular microelectrode technique and fluorescent microscopy. NaHS increased the frequency of miniature end-plate potentials (MEPPs), without changing their amplitude-time parameters. NaHS also increased the amplitude of the evoked postsynaptic responses during single stimulation (0.3 Hz), which was the evidence of the enhanced synaptic vesicle exocytosis. During high-frequency stimulation (50 Hz), NaHS induced more significant decline of neurotransmitter release, probably due to the lower rate of synaptic vesicle mobilization from recycling pool to exocytic sites. NaHS also decreased the uptake of the fluorescent endocytic dye FM 1–43, which indicated the reduced endocytosis of synaptic vesicles. Thus, the H2S donor increases exocytosis and decreases the processes of synaptic vesicle endocytosis and mobilization in the mouse motor nerve ending.  相似文献   

2.
Using electrophysiology and fluorescence microscopy with dye FM 1-43, a comparative study of peculiarities of neurotransmitter secretion, synaptic vesicle exo-endocytosis and recycling has been carried out in nerve terminals (NT) of the skin-sternal muscle of the frog Rana ridibunda and of the white mouse diaphragm muscle during a long-term high-frequency stimulation (20 imp/s). The obtained data have allowed identifying three synaptic vesicle pools and two recycling ways in the motor NT. In the frog NT, the long-term high-frequency stimulation induced consecutive expenditure of the pool ready to release, the mobilizational, and reserve vesicle pools. The exocytosis rate exceeded markedly the endocytosis rate; the slow synaptic vesicle recycling with replenishment of the reserve pool was predominant. In the mouse NT, only the vesicles of the ready to release and the mobilizational pools, which are replenished predominantly by fast recycling, were exocytosed. The exo- and endocytosis occurred practically in parallel, while vesicles of the reserve pool did not participate in the neurotransmitter secretion. It is suggested that evolution of the motor NT from the poikilothermal to homoiothermal animals went by the way of a decrease of the vesicle pool size, the more economic expenditure and the more effective reuse of synaptic vesicles owing to the high rates of endocytosis and recycling. These peculiarities can provide in NT of homoiothermal animals a long maintenance of neurotransmitter secretion at the steady and sufficiently high level to preserve reliability of synaptic transmission in the process of the high-frequency activity.  相似文献   

3.
Ca(2+)-induced Ca2+ release (CICR) occurs in frog motor nerve terminals after ryanodine receptors (RyRs) are primed for activation by conditioning large Ca2+ entry. We studied which type of RyR exists, whether CICR occurs without conditioning Ca2+ entry and how RyRs are primed. Immunohistochemistry revealed the existence of RyR3 in motor nerve terminals and axons and both RyR1 and RyR3 in muscle fibers. A blocker of RyR, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8) slightly decreased rises in intracellular Ca2+ ([Ca2+]i) induced by a short tetanus (50 Hz, 1-2s), but not after treatment with ryanodine. Repetitive tetani (50 Hz for 15s every 20s) produced repetitive rises in [Ca2+]i, whose amplitude overall waxed and waned. TMB-8 blocked the waxing and waning components. Ryanodine suppressed a slow increase in end-plate potentials (EPPs) induced by stimuli (33.3 Hz, 15s) in a low Ca2+, high Mg2+ solution. KN-62, a blocker of Ca(2+)/calmoduline-activated protein kinase II (CaMKII), slightly reduced short tetanus-induced rises in [Ca2+]i, but markedly the slow waxing and waning rises produced by repetitive tetani in both normal and low Ca2+, high Mg2+ solutions. Likewise, KN-62, but not KN-04, an inactive analog, suppressed slow increases in EPP amplitude and miniature EPP frequency during long tetanus. Thus, CICR normally occurs weakly via RyR3 activation by single impulse-induced Ca2+ entry in frog motor nerve terminals and greatly after the priming of RyR via CaMKII activation by conditioning Ca2+ entry, thus, facilitating transmitter exocytosis and its plasticity.  相似文献   

4.
Ca(2+)-induced Ca(2+) release (CICR) enhances a variety of cellular Ca(2+) signaling and functions. How CICR affects impulse-evoked transmitter release is unknown. At frog motor nerve terminals, repetitive Ca(2+) entries slowly prime and subsequently activate the mechanism of CICR via ryanodine receptors and asynchronous exocytosis of transmitters. Further Ca(2+) entry inactivates the CICR mechanism and the absence of Ca(2+) entry for >1 min results in its slow depriming. We now report here that the activation of this unique CICR markedly enhances impulse-evoked exocytosis of transmitter. The conditioning nerve stimulation (10-20 Hz, 2-10 min) that primes the CICR mechanism produced the marked enhancement of the amplitude and quantal content of end-plate potentials (EPPs) that decayed double exponentially with time constants of 1.85 and 10 min. The enhancement was blocked by inhibitors of ryanodine receptors and was accompanied by a slight prolongation of the peak times of EPP and the end-plate currents estimated from deconvolution of EPP. The conditioning nerve stimulation also enhanced single impulse- and tetanus-induced rises in intracellular Ca(2+) in the terminals with little change in time course. There was no change in the rate of growth of the amplitudes of EPPs in a short train after the conditioning stimulation. On the other hand, the augmentation and potentiation of EPP were enhanced, and then decreased in parallel with changes in intraterminal Ca(2+) during repetition of tetani. The results suggest that ryanodine receptors exist close to voltage-gated Ca(2+) channels in the presynaptic terminals and amplify the impulse-evoked exocytosis and its plasticity via CICR after Ca(2+)-dependent priming.  相似文献   

5.
Synaptic vesicle pools at the frog neuromuscular junction   总被引:12,自引:0,他引:12  
We have characterized the morphological and functional properties of the readily releasable pool (RRP) and the reserve pool of synaptic vesicles in frog motor nerve terminals using fluorescence microscopy, electron microscopy, and electrophysiology. At rest, about 20% of vesicles reside in the RRP, which is depleted in about 10 s by high-frequency nerve stimulation (30 Hz); the RRP refills in about 1 min, and surprisingly, refilling occurs almost entirely by recycling, not mobilization from the reserve pool. The reserve pool is depleted during 30 Hz stimulation with a time constant of about 40 s, and it refills slowly (half-time about 8 min) as nascent vesicles bud from randomly distributed cisternae and surface membrane infoldings and enter vesicle clusters spaced at regular intervals along the terminal. Transmitter output during low-frequency stimulation (2-5 Hz) is maintained entirely by RRP recycling; few if any vesicles are mobilized from the reserve pool.  相似文献   

6.
Under the condition of microelectrode recording and fluorescence microscopy with dye FM 1-43 the research of exo-/endocytosis of synaptic vesicles in motor nerve terminals (NT) of frog cutaneous pectoris and white mice diaphragm muscles during high frequency stimulation (20 imp/s) was carried out. A mathematical modeling allowed us to conclude that the obtained experimental data can be explained in the following framework. Three pools of synaptic vesicles are involved in neurotransmitter release in the frog motor NT. Recovery of these pools is provided by endocytosis of two types: fast endocytosis with limited capacity and slow endocytosis. Fast-reconstructing vesicles refill the mobilization pool and slow endocytosis recovers the reserve pool. Our modeling investigation has revealed in frog NT independent recruiting of reserve and mobilization pools to the neurotransmitter secretion, i.e. this pools work concurrently. Experimental data, obtained on mice preparations, are well described with the framework of two-pools model including single type of endocytosis (fast endocytosis).  相似文献   

7.
In our research on mouse diaphragm muscles the dynamic of neurotransmitter secretion and synaptic vesicles recycling (exo-endocytosis cycle) at the long-term rhythmic stimulation (20Hz) are explored using an intracellular microelectrode registration and a fluorescent microscopy. It have been shown, thate change of end plant potentials (EPP) amplitude at the rhythmic training occurs in three phases: initial transient decrease, long amplitude stabilization (1-2 min)--the plateau and secondary slow decrease. After 3 minute stimulations the EPP amplitude recovery observed during several seconds. Loading the synaptic vesicle by fluorescent endocytic dye FM 1-43 had shown that the rhythmic stimulation results to gradual (during 5-6 mines) fluorescence decrease in NT, indicating the synaptic vesicle exocytosis. The quantum analysis of the electrophysiological data and their comparison to the fluorescent researches date has allowed to assume, that mouse motor nerve terminals are characterized by high rate of endocytosis and fast synaptic vesicle reuse (average recycling time about 50 sec) that can provide effective maintenance of synaptic transmission at long high-frequency activity. Sizes of ready releasable and recycling synaptic vesicle pools are quantitatively determined. It is assumed, that vesicle recycling occurs on a short fast way to inclusion in recycling pool. So, in the stimulation protocol that were used the synaptic vesicles from reserve pool remain unused. Thus in our conditions recycling pool vesicles cycle repeatedly without reserve pool release.  相似文献   

8.
The reserve pool (RP) and readily releasable pool (RRP) of synaptic vesicles within presynaptic nerve terminals were physiologically differentiated into distinctly separate functional groups. This was accomplished in glutamatergic nerve terminals by blocking the glutamate transporter with dl-threo-beta-benzyloxyaspartate (TBOA; 10 microM) during electrical stimulation with either 40 Hz of 10 pulses within a train or 20- or 50-Hz continuous stimulation. The 50-Hz continuous stimulation decreased the excitatory postsynaptic potential amplitude 60 min faster than for the 20-Hz continuous stimulation in the presence of TBOA (P < 0.05). There was no significant difference between the train stimulation and 20-Hz continuous stimulation in the run-down time in the presence of TBOA. After TBOA-induced synaptic depression, the excitatory postsynaptic potentials were rapidly (<1 min) revitalized by exposure to serotonin (5-HT, 1 microM) in every preparation tested (P < 0.05). At this glutamatergic nerve terminal, 5-HT promotes an increase probability of vesicular docking and fusion. Quantal recordings made directly at nerve terminals revealed smaller quantal sizes with TBOA exposure with a marked increase in quantal size as well as a continual appearance of smaller quanta upon 5-HT treatment after TBOA-induced depression. Thus 5-HT was able to recruit vesicles from the RP that were not rapidly depleted by acute TBOA treatment and electrical stimulation. The results support the notion that the RRP is selectively activated during rapid electrical stimulation sparing the RP; however, the RP can be recruited by the neuromodulator 5-HT. This suggests at least two separate kinetic and distinct regulatory paths for vesicle recycling within the presynaptic nerve terminal.  相似文献   

9.
Cysteine string protein-α (CSP-α) is a synaptic vesicle protein that prevents activity-dependent neurodegeneration by poorly understood mechanisms. We have studied the synaptic vesicle cycle at the motor nerve terminals of CSP-α knock-out mice expressing the synaptopHluorin transgene. Mutant nerve terminals fail to sustain prolonged release and the number of vesicles available to be released decreases. Strikingly, the SNARE protein SNAP-25 is dramatically reduced. In addition, endocytosis during the stimulus fails to maintain the size of the recycling synaptic vesicle pool during prolonged stimulation. Upon depolarization, the styryl dye FM?2-10 becomes trapped and poorly releasable. Consistently with the functional results, electron microscopy analysis revealed characteristic features of impaired synaptic vesicle recycling. The unexpected defect in vesicle recycling in CSP-α knock-out mice provides insights into understanding molecular mechanisms of degeneration in motor nerve terminals.  相似文献   

10.
During sustained action potential (AP) firing at nerve terminals, the rates of endocytosis compared to exocytosis determine how quickly the available synaptic vesicle pool is depleted, in turn influencing presynaptic efficacy. Mechanisms, including rapid kiss-and-run endocytosis as well as local, preferential recycling of docked vesicles, have been proposed as a means to allow endocytosis and recycling to keep up with stimulation. We show here that, for CNS nerve terminals at physiological temperatures, endocytosis is sufficiently fast to avoid vesicle pool depletion during continuous AP firing at 10 Hz. This endocytosis-exocytosis balance persists for turnover of the entire releasable pool of vesicles and allows for efficient escape of FM 4-64, indicating that it is a non-kiss-and-run endocytic event. Thus, under physiological conditions, the sustained speed of vesicle membrane retrieval for the entire releasable pool appears to be sufficiently fast to compensate for exocytosis, avoiding significant vesicle pool depletion during robust synaptic activity.  相似文献   

11.
Central nerve terminals are placed under considerable stress during intense stimulation due to large numbers of synaptic vesicles (SVs) fusing with the plasma membrane. Classical clathrin-dependent SV endocytosis cannot correct for the large increase in nerve terminal surface area in the short term, due to its slow kinetics and low capacity. During such intense stimulation, an additional SV retrieval pathway is recruited called bulk endocytosis. Recent studies have shown that bulk endocytosis fulfils all of the physiological requirements to remedy the acute changes in nerve terminal surface area to allow the nerve terminal to continue to function. This review will summarise the recent developments in the field that characterise the physiology of bulk endocytosis which show that it is a fast, activity-dependent and high capacity mechanism that is essential for the function of central nerve terminals.  相似文献   

12.
The purpose of this study was to investigate how reciprocal Ia inhibition is changed during muscle fatigue of lower limb muscle, induced with a voluntary contraction or height frequency electrical stimulation. Reciprocal Ia inhibition from ankle flexors to extensors has been investigated in 12 healthy subjects. Hoffmann reflex (H-reflex) in the soleus muscle was used to monitor changes in the amount of reciprocal Ia inhibition from common peroneal nerve as demonstrated during voluntary dorsi or planterflexion and 50 Hz electrical stimulation induced dorsi or planterflexion. The test soleus H-reflex was kept at 20-25% of maximum directly evoked motor response (M response) and the strength of the conditioning common peroneal nerve stimulation was kept at 1.0 x motor threshold. At rest, weak la inhibition was demonstrated in 12 subjects, maximal inhibition from the common peroneal nerve was 28.8%. During voluntary dorsiflexion and 50 Hz electrical stimulation induced dorsiflexion, there absolute amounts of inhibition increased as compared to at rest, and decreased or disappeared during voluntary planterflexion and 50 Hz electrical stimulation induced planterflexion as compared to at rest. During voluntary or electrical stimulation induced agonist muscle fatigue, the inhibition of the soleus H-reflex from the common peroneal nerve was greater during voluntary dorsiflexion (maximal, 11.1%) and 50 Hz (maximal, 6.7%) electrical stimulation induced dorsiflexion than at rest. The inhibition was decreased or disappeared during voluntary planterflexion 50 Hz electrical stimulation induced planterflexion. It was concluded that the results were considered to support the hypothesis that alpha-motoneurones and la inhibitory intemeurones link to antagonist motoneurones in reciprocal inhibition. The diminished reciprocal Ia inhibition of voluntary contraction during muscle fatigue as compared to electrical stimulation, is discussed in relation to its possible contribution to ankle stability.  相似文献   

13.
Muscarinic facilitation of 14C-ACh release from post-ganglionic parasympathetic nerve terminals was studied in bladder strips prepared from spinal intact (SI) and spinal cord transected (SCT) rats. The spinal cord was transected at the lower thoracic spinal segments 3 weeks prior to the experiments. Using non-facilitatory stimulation (2 Hz) the release of ACh in spinal intact rats did not change in the presence of a non-specific muscarinic antagonist, atropine (100 nM), an M(1) specific antagonist (pirenzepine, 50 nM) or an M(1)-M(3) specific antagonist (4-DAMP, 5 nM). However, during a facilitatory stimulation paradigm (10 Hz or 40 Hz, 100 shocks) atropine and pirenzepine, but not 4-DAMP inhibited the release of ACh in bladders from spinal intact rats, indicating an M(1) receptor-mediated facilitation. In spinal cord transected rats, 2 Hz stimulation-induced release was significantly inhibited by atropine or 4-DAMP but not by pirenzepine indicating that a pre-junctional facilitatory mechanism mediated via M(3) muscarinic receptors could be induced by a non-facilitatory stimulation paradigm after spinal injury. In bladders of spinal cord transected rats, 10 Hz stimulation-evoked release of ACh was also inhibited by atropine and 4-DAMP (5 nM) but not by pirenzepine (50 nM). These results indicate that pre-junctional muscarinic receptors at cholinergic nerve endings in the bladder change after chronic spinal cord injury. It appears that low affinity M(1) muscarinic receptors are replaced by high affinity M(3) receptors. This change in modulation of ACh release may partly explain the bladder hyperactivity after chronic spinal cord injury.  相似文献   

14.
Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis.  相似文献   

15.
In this study, human median nerve was exposed to power frequency magnetic fields in order to provide clarification for possibly changeable nerve conduction mechanism. The nerve was exposed to 50 Hz magnetic field by utilizing a special Helmholtz applicator. The experiments were carried out with six healthy human-volunteers. Median motor distal amplitude/proximal amplitude ratios were recorded from adult human median nerve pre-exposure, during, and post-exposure to a 50 Hz, 1 mT magnetic field. The result of 18 measurements shows that median motor distal amplitude/proximal amplitude ratio significantly decreases in pre-exposure state as compare to post exposure of which. The results of this study may be useful for some nerve rehabilitation, excitation, and stimulation in more effective/safe physical therapy. Additionally, 50 Hz, 1 mT sinusoidal magnetic field should not be recognizing as safe for conduction mechanism on a nerve. These mechanisms would be cleared by new advanced engineering models in other future works.  相似文献   

16.
Using pharmacological (Simpson, L.L., 1980, J. Pharmacol. Exp. Ther. 212:16-21) and autoradiographic techniques (Black, J.D., and J.O. Dolly, 1986, J. Cell Biol., 103:521-534), it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. This proposal is supported further by the fact that lysosomotropic agents, which are known to interfere with the endocytic pathway, retard the onset of BoNT-induced neuroparalysis and also affect the distribution of silver grains at nerve terminals treated with 125I-BoNT. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target.  相似文献   

17.
Splanchnic nerve stimulation in bursts at low (5 Hz) and high (50 Hz) frequency (30 V, 1 msec; train duration 1 sec; train rate 0.5/second) was employed in 10 cats under halothane anesthesia, during 10-minute periods, while blood samples were concurrently collected from the adrenal vein and femoral artery for the measurement of norepinephrine (NE), epinephrine (EPI), dopamine (DA), Met-enkephalin (ME), neuropeptide Y (NPY), peptide YY (PYY) and neurotensin (NT). In Group I (n = 5), splanchnic nerve stimulation was initially applied at 5 Hz followed after 20 min by a 50 Hz stimulus, while in Group II (n = 5) the stimulation sequence was reversed. Adrenal vein and femoral artery plasma levels of catecholamines and neuropeptides were not significantly affected by the stimulation sequence, while a significant decrease in blood pressure response was observed in Group II during the 5 Hz stimulation as compared to Group I, indicating desensitization. Splanchnic nerve stimulation at 5 Hz caused a preferential increase in adrenal vein NE (9-fold) versus EPI (7-fold) levels as compared to baseline, while 50 Hz stimulation led to further comparable increases in NE (5-fold) and EPI (6-fold) levels. Significant increases in adrenal vein DA and neuropeptide levels were only observed during 50 Hz stimulation, with DA showing a 5-fold, ME a 2.6-fold and NPY a 3-fold increase as compared to 5 Hz stimulation, and NT a 3.6-fold increase as compared to baseline. Present findings indicate different dynamics in the movement of catecholamines and neuropeptides from the adrenal.  相似文献   

18.
In the experiments on frog motor nerve endings of cutaneous pectoris muscle, made by extracellular recording of synaptic signals, it has been shown that the increase in intracellular calcium ion concentration in the nerve ending (by enhance of extracellular potassium ion concentration, or by addition of caffeine) leads to an increase in the miniature end-plate potential frequency, which is preserved over the whole period (about 10 min) of action of these substrates. The rhythmic stimulation of motor nerve (20 or 100 imp/s) quickly leads to a decrease in the end plate potentials amplitude. It has been shown by fluorescent microscopy with the use of endocytotic marker FM 1-43 that in the course of a short time exposition (5 min) in a high potassium solution (40 mM) or caffeine (5 mM), light spots appeared in the nerve ending. This shows that synaptic vesicles undergo intensive processes of endocytosis. During a longer exposition (30 min) no light spots were revealed, whereas the nerve ending width increased. This data allowed to propose that the process of endocytosis was blocked. In the presence of even lower concentrations of potassium ions and caffeine, and during a long rhythmic stimulation (20 or 100 imp/s) no blocking of endocytosis was revealed. It is concluded that high concentrations of intracellular calcium in the frog motor nerve ending leads to a reversible block of endocytosis, while exocytosis in synaptic vesicles is proceeding.  相似文献   

19.
This study aimed to test whether nerve-evoked and adenosine-induced synaptic depression are due to reduction in Ca2+ entry in nerve terminals of the frog neuromuscular junction. Nerve terminals were loaded with the fluorescent Ca2+ indicator fluo 3 (fluo 3-AM) or loaded with dextran-coupled Ca2+ green-1 transported from the cut end of the nerve. Adenosine (10-50 microM) did not change the resting level of Ca2+ in the presynaptic terminal, whereas it induced large Ca2+ responses in perisynaptic Schwann cells, indicating that adenosine was active and might have induced changes in the level of Ca2+ in the nerve terminal. Ca2+ responses in nerve terminals could be induced by nerve stimulation (0.5 or 100 Hz for 100 ms) over several hours. In the presence of adenosine (10 microM), the size and duration of the nerve-evoked Ca2+ responses were unchanged. When extracellular Ca2+ concentration was lowered to produce the same reduction in transmitter release as the application of adenosine, Ca2+ responses induced by nerve stimulations were reduced by 40%. This indicates that changes in Ca2+ responsible for the decrease in release should have been detected if the mechanism of adenosine depression involved partial block of Ca2+ influx. Ca2+ responses evoked by prolonged high frequency trains of stimuli (50 Hz for 10 or 30 s), which caused profound depression of transmitter release, were sustained during the whole duration of the stimulation, and adenosine had no effect on these responses. These data indicate that neither adenosine induced synaptic depression nor stimulation-induced synaptic depression are caused by reductions in Ca2+ entry into the presynaptic terminal in the frog neuromuscular junction.  相似文献   

20.
Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated endocytosis predominate. However, during increased neuronal activity, additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarize the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号