首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin concentrations in serum, as well as urinary levels of its main metabolite, 6-sulphatoxymelatonin, decrease with age. In the course of aging, the frequency of heart diseases, both acute and chronic, systematically increases. The evidence from the last 10 years suggests that melatonin influences the cardiovascular system. The presence of vascular melatoninergic receptors/binding sites has been demonstrated; these receptors are functionally linked with vasoconstrictor or vasodilatory effects of melatonin. Melatonin can contribute in cardioprotection of the rat heart, following myocardial ischemia. It has been shown that patients with coronary heart disease have a low melatonin production rate, especially those with higher risk of cardiac infarction and/or sudden death. There are clinical data reporting some alterations of melatonin in human stroke and coronary heart disease. The suprachiasmatic nucleus and, possibly, the melatoninergic system may also modulate cardiovascular rhythmicity. Hypercholesterolemia and hypertension are the other age-related symptoms. People with high levels of LDL-cholesterol have low levels of melatonin. It has been shown that melatonin suppresses the formation of cholesterol by 38% and reduces LDL accumulation by 42%. A 10-20% reduction of cholesterol concentration in women using the B-oval pill has been observed. It is a very important because, even a 10-15% reduction in blood cholesterol concentration has bee shown to result in a 20 to 30% decrease in the risk of coronary heart disease. People with hypertension have lower melatonin levels than those with normal blood pressure. The administration of the hormone in question declines blood pressure to normal range. It has been observed that melatonin, even in a dose 1 mg, reduced blood pressure and decreased catecholamine level after 90 min in human subjects. Melatonin may reduce blood pressure via the following mechanisms: 1) by a direct effect on the hypothalamus; 2) as an antioxidant which lowers blood pressure; 3) by decreasing the level of catecholamines, or 4) by relaxing the smooth muscle in the aorta wall.  相似文献   

2.
Serotonin N-acetyltransferase (NAT) activity and melatonin show a daily rhythm with high levels at night. Although the rhythmic properties of NAT and melatonin are similar in pineal gland and retina, great differences in the light perception and transmission mechanisms exist. We have analyzed the effects of adrenergic and dopaminergic agents on greenfrog (Rana perezi) eyecup culture, in order to identify the receptors involved in the regulation of retinal melatonin synthesis. A D2-like receptor is directly involved in the regulation of NAT activity and melatonin release in R. perezi retina. Quinpirole mimics the effect of light, reducing the darkness-stimulated NAT activity and melatonin release, while sulpiride antagonized these actions. Neither D1-agonist (SKF 38393) nor D1-antagonist (SCH 23390) had effect on NAT activity. However, a significant inhibition of darkness-evoked melatonin release was produced by SKF 38393 after 6 hours of culture. The beta- and antagonist1-agonists showed a clear inhibition. However, a direct effect of beta, alpha1 and D1-agonists on photoreceptors is unproven, being more probable that the adrenergic actions imply a non-photoreceptor retinal cell. In conclusion, eyecup culture of Rana perezi revealed a dopaminergic control of melatonin synthesis and a possible modulation of dopaminergic tone by adrenergic receptors. Melatonin release is a more sensitive parameter than NAT activity to the action of neuroactive agents, suggesting that melatonin synthesis can be regulated by more than one enzymatic step in Rana perezi.  相似文献   

3.
Breast cancer is the most prevalent cancer and one of the most important causes of death in women throughout the world. Breast cancer risk factors include smoking, alcohol consumption, personal and family history, hypertension, and hormone therapy, long-term use of nonsteroidal anti-inflammatory drugs and tobacco usage. Surgery, chemotherapy, radiotherapy, immunotherapy, and neoadjuvant therapy are the current means for breast cancer treatment. Despite hormonal agents and chemotherapy, which have beneficial effects on lowering breast cancer death rate, the reaction of different people to these treatments is still a challenging point. Melatonin (N-acetyl-5-methoxy tryptamine) is a methoxy indole compound that is mainly secreted by the pineal gland at night; it is as an antioxidant, anti-inflammatory, and oncostatic agent. On the basis of recent studies, melatonin has antitumor properties on different cancer types and it may suppress cancer development in vitro and as well as in animal models. It is suggested that melatonin inhibits the development of breast cancer by various mechanisms. This paper summarizes the roles of melatonin in breast cancer treatment from the aspect of its molecular actions.  相似文献   

4.
Involvement of cGMP in cellular melatonin responses.   总被引:1,自引:0,他引:1  
Melatonin can enhance and suppress constitutive protein secretion from murine melanoma M2R cells in vitro in a cholera-toxin (CTX) sensitive process. In a number of tissues melatonin has been shown to modulate cGMP levels. The involvement of cGMP in melatonin responses in the melanoma cells was investigated. The effects of melatonin on melanoma cells cGMP and cGMP-phosphodiesterase activity and the effects of cGMP analogs on the melatonin-mediated modulation of protein secretion were studied. Melatonin reduced cGMP levels in the melanoma cells. CTX treatment had a similar and non-additive effect. The effects of melatonin on protein secretion were abrogated by activation of cGMP-dependent protein kinases. In addition, melatonin inhibited cGMP phosphodiesterase activity in these cells. The data presented indicate that inhibition of cGMP via a CTX sensitive G protein may be a major signal transduction pathway used by melatonin in melanoma cells.  相似文献   

5.
Achievement of target intraocular pressure is the goal of every efficient antiglaucoma therapy. Target intraocular pressure is the level of intraocular pressure which is associated with minimal likelihood of visual field or optic nerve lesion, or an existing lesion progression due to elevated intraocular pressure. Results of large clinical studies which have offered some new concepts on target intraocular pressure in the management of glaucoma are reviewed. An association between the curve of intraocular pressure decrease and glaucoma progression was demonstrated in these studies. Generally, a lower value of target intraocular pressure implies better protection from the loss of vision and visual field impairment in glaucoma patients. In advanced glaucoma, the greatest possible reduction from the initial intraocular pressure should be attempted. A 20% reduction from the initial intraocular pressure or decrease to < 18 mmHg in advanced glaucoma has been recognized as a favorable strategy to reach target intraocular pressure. In normal tension glaucoma, a lower value of target intraocular pressure is associated with a slower disease progression. In patients with initial glaucoma, 25% reduction from the initial intraocular pressure will slow down the disease progression by 45%. The value of target intraocular pressure depends on the pretreatment level of intraocular pressure, optic nerve condition, glaucoma disease state, rate of glaucoma progression, patient's age, and other risk factors for the development of glaucoma.  相似文献   

6.
Melatonin is a ubiquitous indoleamine hormone synthesized primarily by the pineal gland. Diverse biological actions of melatonin involve quite complex mechanisms via its membrane receptors. More recently, studies have focused on the role of melatonin in male fertility preservation and male reproductive system. The protective effects of melatonin on immature testicular tissue freshness and activity maintenance and the preservation of sperm and spermatogonial stem cells (SSCs) have attracted considerable attention in recent years. Furthermore, since melatonin has strong antioxidant and anti-apoptotic properties, researchers have examined its potential role in male reproductive system. In this article, recent progress regarding melatonin's effects on male fertility preservation and its potential role is reviewed.  相似文献   

7.
Free radicals are involved in the protective mechanism of preconditioning (PC), whereas antioxidant compounds abolish this benefit. Melatonin is a hormone with antioxidant properties. The aim of our study was to evaluate the effect of melatonin on infarct size in ischemic preconditioning in vivo. We randomly divided 33 male rabbits into four groups and subjected them to 30 min of myocardial ischemia and 3 h of reperfusion with the following prior interventions: (i) no intervention, (ii) iv melatonin at a total dose of 50 mg/kg, (iii) PC with two cycles of 5 min ischemia and 10 min reperfusion, and (iv) combined melatonin and PC. In a second series of experiments, another antioxidant agent N-acetylcysteine (NAC) was used in a control and in a PC group. Myocardial infarct size was determined and blood samples were drawn at different time points for the determination of lipid peroxidation products, total superoxide dismutase (SOD) activity, and (1)H-NMR spectra to evaluate the changes in the metabolic profile. Melatonin showed no effect on myocardial infarct size in the group of sustained ischemia (42.9 +/- 3.6% vs 47.4 +/- 4.9%) and it did not attenuate the reduction of myocardial infarct size in the PC group (13.6 +/- 2.4% vs 14.0 +/- 1.7%). A similar effect was found in NAC-treated groups (44.8 +/- 3.4% vs 14.3 +/- 1.3%). Lipid peroxidation product levels were significantly elevated in the control and PC groups, whereas melatonin decreased them in both groups. The SOD activity was enhanced in the PC group compared to controls; melatonin kept SOD activity unchanged during ischemia/reperfusion and enhanced its activity when it was combined with PC. Melatonin did not change the metabolic profile of the control and PC groups. Melatonin does not prevent the beneficial effect of ischemic PC on infarct size despite its antioxidant properties.  相似文献   

8.
Melatonin is a ubiquitous molecule and widely distributed in nature, with functional activity occurring in unicellular organisms, plants, fungi and animals. In most vertebrates, including humans, melatonin is synthesized primarily in the pineal gland and is regulated by the environmental light/dark cycle via the suprachiasmatic nucleus. Pinealocytes function as 'neuroendocrine transducers' to secrete melatonin during the dark phase of the light/dark cycle and, consequently, melatonin is often called the 'hormone of darkness'. Melatonin is principally secreted at night and is centrally involved in sleep regulation, as well as in a number of other cyclical bodily activities. Melatonin is exclusively involved in signaling the 'time of day' and 'time of year' (hence considered to help both clock and calendar functions) to all tissues and is thus considered to be the body's chronological pacemaker or 'Zeitgeber'. Synthesis of melatonin also occurs in other areas of the body, including the retina, the gastrointestinal tract, skin, bone marrow and in lymphocytes, from which it may influence other physiological functions through paracrine signaling. Melatonin has also been extracted from the seeds and leaves of a number of plants and its concentration in some of this material is several orders of magnitude higher than its night-time plasma value in humans. Melatonin participates in diverse physiological functions. In addition to its timekeeping functions, melatonin is an effective antioxidant which scavenges free radicals and up-regulates several antioxidant enzymes. It also has a strong antiapoptotic signaling function, an effect which it exerts even during ischemia. Melatonin's cytoprotective properties have practical implications in the treatment of neurodegenerative diseases. Melatonin also has immune-enhancing and oncostatic properties. Its 'chronobiotic' properties have been shown to have value in treating various circadian rhythm sleep disorders, such as jet lag or shift-work sleep disorder. Melatonin acting as an 'internal sleep facilitator' promotes sleep, and melatonin's sleep-facilitating properties have been found to be useful for treating insomnia symptoms in elderly and depressive patients. A recently introduced melatonin analog, agomelatine, is also efficient for the treatment of major depressive disorder and bipolar affective disorder. Melatonin's role as a 'photoperiodic molecule' in seasonal reproduction has been established in photoperiodic species, although its regulatory influence in humans remains under investigation. Taken together, this evidence implicates melatonin in a broad range of effects with a significant regulatory influence over many of the body's physiological functions.  相似文献   

9.
Melatonin increases sleepiness, decreases core temperature, and increases peripheral temperature in humans. Melatonin may produce these effects by activating peripheral receptors or altering autonomic activity. The latter hypothesis was investigated in 16 supine subjects. Three conditions were created by using bright light and exogenous melatonin: normal endogenous, suppressed, and pharmacological melatonin levels. Data during wakefulness from 1.5 h before to 2.5 h after each subject's estimated melatonin onset (wake time + 14 h) were analyzed. Respiratory sinus arrhythmia (cardiac parasympathetic activity) and preejection period (cardiac sympathetic activity) did not vary among conditions. Pharmacological melatonin levels significantly decreased systolic blood pressure [5.75 +/- 1.65 (SE) mmHg] but did not significantly change heart rate. Suppressed melatonin significantly increased rectal temperature (0.27 +/- 0.06 degrees C), decreased foot temperature (1.98 +/- 0.70 degrees C), and increased sleep onset latency (5.53 +/- 1.87 min). Thus melatonin does not significantly alter cardiac autonomic activity and instead may bind to peripheral receptors in the vasculature and heart. Furthermore, increases in cardiac parasympathetic activity before normal nighttime sleep cannot be attributed to the concomitant increase in endogenous melatonin.  相似文献   

10.
Melatonin is a neurohormone that is believed to be involved in a wide range of physiological functions. In humans, appropriate clinical trials confirm the efficacy of melatonin or melatoninergic agonists for the MT1 and MT2 receptor subtypes in circadian rhythm sleep disorders only. Nevertheless, preclinical animal model studies relevant to human pathologies involving validated reference compounds lead to other therapeutic possibilities. Among these is a recently developed treatment concept for depression, which has been validated by the clinical efficacy of agomelatine, an agent having both MT1 and MT2 agonist and 5-HT2C antagonist activity. A third melatonin binding site has been purified and characterized as the enzyme quinone reductase 2 (QR2). The physiological role of this enzyme is not yet known. Recent results obtained by different groups suggest: (1) that inhibition of QR2 may lead to "protective" effects and (2) that over-expression of this enzyme may have deleterious effects. The inhibitory effect of melatonin on QR2 observed in vitro may explain the protective effects reported for melatonin in different animal models, such as cardiac or renal ischemia-effects that have been attributed to the controversial antioxidant properties of the hormone. The development of specific ligands for each of these melatonin binding sites is necessary to link physiological and/or therapeutic effects.  相似文献   

11.
The production of the pineal hormone melatonin is synchronized with day-night cycle via multisynaptic pathway including suprachiasmatic nucleus linking several physiological functions to diurnal cycle. The recent data indicate that impaired melatonin production is involved in several cardiovascular pathologies including hypertension and ischemic heart disease. However, the mechanisms of melatonin effect on cardiovascular system are still not completely understood. The activation of melatonin receptors on endothelial and vascular smooth muscle cells and antioxidant properties of melatonin could be responsible for the melatonin effects on vascular tone. However, the data from in vitro studies are controversial making the explanation of the melatonin effect on blood pressure in vivo difficult. In vivo, melatonin also attenuates sympathetic tone by direct activation of melatonin receptors, scavenging free radicals or increasing NO availability in the central nervous system. The central and peripheral antiadrenergic action of chronic melatonin treatment might eliminate the mechanisms counter-regulating decreased blood pressure, providing thus additional cardioprotective mechanism. The extraordinary antioxidant activity and antilipidemic effects of melatonin may enhance the modulation of blood pressure by melatonin and probably play the most important role in the amelioration of target organ damage by chronic melatonin treatment. Further investigation of these mechanisms should provide novel knowledge about pathophysiological mechanisms of cardiovascular diseases, additional explanation for their circadian and seasonal variability and potentially generate new impulses for the development of therapeutic arsenal.  相似文献   

12.
From a physiological perspective the sleep-wake cycle can be envisioned as a sequence of three physiological states (wakefulness, non-rapid eye movement, NREM, sleep and REM sleep) which are defined by a particular neuroendocrine-immune profile regulating the metabolic balance, body weight and inflammatory responses. Sleep deprivation and circadian disruption in contemporary "24/7 Society" lead to the predominance of pro-orexic and proinflammatory mechanisms that contribute to a pandemic metabolic syndrome (MS) including obesity, diabetes and atherosclerotic disease. Thus, a successful management of MS may require a drug that besides antagonizing the trigger factors of MS could also correct a disturbed sleep-wake rhythm. This review deals with the analysis of the therapeutic validity of melatonin in MS. Melatonin is an effective chronobiotic agent changing the phase and amplitude of the sleep/wake rhythm and having cytoprotective and immunomodulatory properties useful to prevent a number of MS sequels. Several studies support that melatonin can prevent hyperadiposity in animal models of obesity. Melatonin at a low dose (2-5 mg/day) has been used for improving sleep in patients with insomnia and circadian rhythm sleep disorders. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects (ramelteon, agomelatine, tasimelteon, TK 301). In clinical trials these analogs were employed in doses considerably higher than those usually employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin doses in the range of 50-100 mg/day are needed to assess its therapeutic value in MS.  相似文献   

13.
Central corneal thickness is very important measurement in glaucoma treatment because it influences the eye pressure measurements. A thinner cornea gives us artifactually lower intraocular pressure and a thicker cornea gives higher intraocular pressure reading, so it has to be corrected in both cases. The aim of this study is to compare central corneal thickness between congenital glaucoma patients and normal subjects. Prospective study included 27 patients with congenital glaucoma and 35 patients in control group. First group was subdivided in two subgroups: A--8 earlier operated patients, B--19 patients treated with topic therapy. Patients had no other corneal disorders, history of trauma, corneal surgery and they were not contact lens wearers. Measurements were performed by specular microscope Tomey EM 3000 on central corneas. This study showed that patients with congenital glaucoma have lower central corneal thickness than normal subjects. Also, the study showed that antiglaucomatous operation doesn't influence central corneal thickness. Central corneal thickness need to be a routine part of examination measurements because of need to correct intraocular pressure according to it, but also the thinner corneas values can suggest congenital glaucoma diagnosis beside the other parameters.  相似文献   

14.
15.
Abstract: Melatonin is synthesized by cultured Y79 human retinoblastoma cells and is secreted into the medium. Activity of the two key enzymes involved in the synthesis of melatonin, N -acetyltransferase (NAT) and hydroxyindole- O -methyl-transferase (HIOMT), are present in retinoblastoma cells. The activity of these enzymes and the resulting synthesis and release of melatonin are modulated by the addition of a cyclic AMP analogue and butyrate to the culture medium. Melatonin levels increase dramatically over control levels after the addition of dibutyryl cyclic AMP (dbcAMP), whereas melatonin levels decrease after butyrate treatment. HIOMT activity is inhibited by both dbcAMP and butyrate, and NAT activity is stimulated by both of these differentiating agents, suggesting that the rise in melatonin levels in response to dbcAMP is the result of increased activity of NAT, whereas the decline in melatonin levels in response to butyrate may be due to a drop in HIOMT activity. Melatonin synthesis is dose- and time-dependent, and the effect of dbcAMP is readily reversible, whereas the effect of butyrate does not appear to be reversible. These effects probably reflect basic differences in the regulatory mechanisms of the inducing agents.  相似文献   

16.
We have previously determined that melatonin modulates hippocampal synaptic transmission in a biphasic way: an initial depression was followed by a recovery/amplification phase. Here we describe the influence of two novel melatonin receptor ligands, BMNEP (N-bromoacetyl-2-iodo-5-methoxytryptamine) and TMPEI (N-[2-(2-Trimethylammoniumethyleneoxy-7-methoxy)ethyl]propionamide iodide), on the population spike (PS) and excitatory postsynaptic potentials (EPSP) recorded from mouse hippocampal slices. BMNEP, which specifically alkylates and constitutively activates the MT2 melatonin receptor, mimicked the first phase of melatonin's action by irreversibly depressing both the PS and EPSP. TMPEI, a charged ligand of plasma membrane melatonin receptors, amplified those potentials in a manner similar to the effect of melatonin observed during the second, recovery phase. Melatonin had no influence on the potentials amplified by the action of TMPEI. Our results suggest that the biphasic, receptor-dependent action of melatonin and its analogs modulates the efficiency of the hippocampal glutamergic synapse and is most likely mediated through two different, sequentially occurring mechanisms.  相似文献   

17.
Actions of melatonin in the reduction of oxidative stress   总被引:18,自引:0,他引:18  
Melatonin was discovered to be a direct free radical scavenger less than 10 years ago. Besides its ability to directly neutralize a number of free radicals and reactive oxygen and nitrogen species, it stimulates several antioxidative enzymes which increase its efficiency as an antioxidant. In terms of direct free radical scavenging, melatonin interacts with the highly toxic hydroxyl radical with a rate constant equivalent to that of other highly efficient hydroxyl radical scavengers. Additionally, melatonin reportedly neutralizes hydrogen peroxide, singlet oxygen, peroxynitrite anion, nitric oxide and hypochlorous acid. The following antioxidative enzymes are also stimulated by melatonin: superoxide dismutase, glutathione peroxidase and glutathione reductase. Melatonin has been widely used as a protective agent against a wide variety of processes and agents that damage tissues via free radical mechanisms.  相似文献   

18.
Colorectal cancer is one of the most common cancers among the elderly, which is also seen in the forms of hereditary syndromes occurring in younger individuals. Numerous studies have been conducted to understand the molecular and cellular pathobiology underlying colorectal cancer. These studies have found that cellular signaling pathways are at the core of colorectal cancer pathology. Because of this, new agents have been proposed as possible candidates to accompany routine therapy regimens. One of these agents is melatonin, a neuro-hormone known best for its essential role in upholding the circadian rhythm and orchestrating the many physiologic changes it accompanies. Melatonin is shown to be able to modulate many signaling pathways involved in many essential cell functions, which if deregulated cause an accelerated pace towards cancer. More so, melatonin is involved in the regulation of immune function, tumor microenvironment, and acts as an antioxidant agent. Many studies have focused on the beneficial effects of melatonin in colorectal cancers, such as induction of apoptosis, increased sensitivity to chemotherapy agents and radiotherapy, limiting cellular proliferation, migration, and invasion. The present review aims to illustrate the known significance of melatonin in colorectal cancer and to address possible clinical use.  相似文献   

19.
Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease in the central nervous system (CNS). Melatonin is an effective treatment in MS patients and experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Melatonin secretion peaks at 2 AM, concomitant with the time at which the muscles are resting and the body is exerting its antioxidant activity. The current study was designed to investigate combination treatment of baclofen, a muscle relaxant drug, and melatonin in EAE mice. Results showed that melatonin (Mel) alone or in combination with baclofen (Bac + Mel) reduced clinical scores and demyelination by significantly increasing myelin oligodendrocyte glycoprotein (MOG) levels, a marker for mature oligodendrocytes, compared to EAE mice. Moreover, Mel or Bac + Mel therapy caused a significant increase in IL-4 serum levels, an anti-inflammatory cytokine, whereas IFN-γ serum levels, a pro-inflammatory cytokine, were significantly reduced. On the other hand, Mel or Bac + Mel caused a significant reduction in malondialdehyde (MDA) levels, a marker of oxidative stress, in comparison to EAE mice. In contrast, the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) was significantly increased in Mel and Bac + Mel groups. In summary, combination therapy improved clinical scores and tend to enhance the efficiency of melatonin treatment by further promoting remyelination, decreasing inflammation, and stimulating the activity of antioxidant enzymes, which suggests that prior spasticity treatment increases the efficacy of melatonin therapy in EAE mouse model of MS. Further experimental and clinical studies are needed to ensure the beneficial role of this combination strategy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号