共查询到20条相似文献,搜索用时 15 毫秒
1.
AbstractThe mitochondrial ADP/ATP carrier imports ADP from the cytosol into the mitochondrial matrix for its conversion to ATP by ATP synthase and exports ATP out of the mitochondrion to replenish the eukaryotic cell with chemical energy. Here the substrate specificity of the human mitochondrial ADP/ATP carrier AAC1 was determined by two different approaches. In the first the protein was functionally expressed in Escherichia coli membranes as a fusion protein with maltose binding protein and the effect of excess of unlabeled compounds on the uptake of [ 32P]-ATP was measured. In the second approach the protein was expressed in the cytoplasmic membrane of Lactococcus lactis. The uptake of [ 14C]-ADP in whole cells was measured in the presence of excess of unlabeled compounds and in fused membrane vesicles loaded with unlabeled compounds to demonstrate their transport. A large number of nucleotides were tested, but only ADP and ATP are suitable substrates for human AAC1, demonstrating a very narrow specificity. Next we tried to understand the molecular basis of this specificity by carrying out molecular-dynamics simulations with selected nucleotides, which were placed at the entrance of the central cavity. The binding of the phosphate groups of guanine and adenine nucleotides is similar, yet there is a low probability for the base moiety to be bound, likely to be rooted in the greater polarity of guanine compared to adenine. AMP is unlikely to engage fully with all contact points of the substrate binding site, suggesting that it cannot trigger translocation. 相似文献
2.
Saccharomyces cerevisiae strains expressing a single type of ADP/ATP carrier (AAC) protein were prepared from a mutant in which all AAC genes were disrupted, by transformation with plasmids containing a chosen AAC gene. As demonstrated by measurements of [14C]ADP specific binding and transport, all three translocator proteins, AAC1, AAC2 and AAC3 when present in the mitochondrial membrane, exhibited similar translocation properties. The disruption of some AAC genes, however, resulted in phenotypes indicating that the function of these proteins in whole cells can be quite different. Specifically, we found that the disruption of AAC1 gene, but not AAC2 and AAC3, resulted in a change in colony phenotype. 相似文献
5.
The adenine nucleotide carrier, or Ancp, is an integral protein of the inner mitochondrial membrane. It is established that the inactive Ancp bound to one of its inhibitors (CATR or BA) is a dimer, but different contradictory models were proposed over the past years to describe the organization of the active Ancp. In order to decide in favor of a single model, it is necessary to establish the orientations of the N- and C-termini and thus the parity of the Ancp transmembrane segments (TMS). According to this, we have constructed a gene encoding a covalent tandem dimer of the Saccharomyces cerevisiae Anc2p and we demonstrate that it is stable and active in vivo as well as in vitro. The properties of the isolated dimer are strongly similar to those of the native Anc2p, as seen from nucleotide exchange and inhibitor binding experiments. We can therefore conclude that the native Anc2p has an even number of TMS and that the N- and C-terminal regions are exposed to the same cellular compartment. Furthermore, our results support the idea of a minimal dimeric functional organization of the Ancp in the mitochondrial membrane and we can suggest that TMS 1 of one monomer and TMS 6 of the other monomer in the native dimer are very close to each other. 相似文献
6.
Genetic and biochemical analysis of Saccharomyces cerevisiae containing a disruption of the nuclear gene (AAC1) encoding the mitochondrial ADP/ATP carrier has revealed a second gene for this protein. The second gene, designated AAC2, has been isolated by genetic complementation and sequenced. AAC2 contains a 954-base pair open reading frame coding for a protein of 318 amino acids which is highly homologous to the AAC1 gene product except that it is nine amino acids longer at the NH2 terminus. The two yeast genes are highly conserved at the level of DNA and protein and share identity with the ADP/ATP carriers from other organisms. Both genes complement an ADP/ATP carrier defect (op1 or pet9). However, the newly isolated gene AAC2 need be present only in one or two copies while the previously isolated AAC1 gene must be present in multiple copies to support growth dependent on a functional carrier protein. This gene dosage-dependent complementation combined with the high degree of conservation suggest that these two functionally equivalent genes may be differentially expressed. 相似文献
7.
One of the major evolutionary events that transformed an endosymbiotic bacterium into a mitochondrion was the acquisition of the ATP/ADP carrier (AAC) in order to supply the host with respiration-derived ATP. Along with the mitochondrial carrier, an unrelated carrier is known, which is characteristic of intracellular chlamydiae, plastids, parasitic intracellular eukaryote Encephalitozoon cuniculi, and the genus Rickettsia of obligate endosymbiotic α-proteobacteria. This nonmitochondrial carrier was recently described in rickettsia-like endosymbionts (RLE), a group of obligate intracellular bacteria classified with the order Rickettsiales, which have diverged after free-living α-proteobacteria but before sister groups of the Rickettsiaceae assemblage (true rickettsiae) and mitochondria. Published controversial phylogenetic data on nonmitochondrial AAC were re-analyzed in the present work, using both DNA and protein sequences and various methods including Bayesian analysis. The data presented are consistent with the classic endosymbiont theory for the origin of mitochondria and suggest that even the last but one common ancestor of rickettsiae and organelles was an endosymbiotic bacterium, in which AAC first originated. 相似文献
8.
ATP/ADP isopentenyltransferase (IPTs) genes encode key enzymes involved in cytokinin synthesis. In this study, the functions of ATP/ADP PpIPTs in peach were investigated. According to the genome sequence, we have found and verified that there are four members of this gene family in peach, namely, PpIPT1, PpIPT3, PpIPT5, and PpIPT7. Overexpression of each of these genes in Arabidopsis resulted in increased levels of cytokinins in the transgenic plants, confirming their roles in cytokinin synthesis. Numerous altered phenotypes were observed in the transgenic plants, including vigorous growth and enhanced salt resistance. ATP/ADP PpIPTs were expressed in tissues throughout the plant, but the expression patterns differed between the genes. Only PpIPT3 was upregulated within 2 h after the application of nitrate to N-deprived peach seedlings, and the increase was resistant to pre-treatment of a specific nitrate metabolism inhibitor. Results showed that ATP/ADP PpIPT expression levels decreased significantly in pulp within 2 weeks after flowering and remained low. However, pulp cytokinin levels were quite high during this time. Only PpIPT5 in seed increased significantly within 2 weeks after flowering, which was consistent with cytokinin levels during early fruit development, suggesting that PpIPT5 in seed is the key gene for cytokinin biosynthesis during early fruit development. ATP/ADP PpIPT expression also increased significantly during later fruit development in seed. 相似文献
9.
A concise review is given of the research in our laboratory on the ADP/ATP carrier (AAC) and the uncoupling protein (UCP). Although homologous proteins, their widely different functions and contrasts are stressed. The pioneer role of research on the AAC, not only for the mitochondrial but also for other carriers, and the present state of their structure-function relationship is reviewed. The function of UCP as a highly regulated H + carrier is described in contrast to the largely unregulated ADP/ATP exchange in AAC. General principles of carrier catalysis as derived from studies on the AAC and UCP are elucidated. 相似文献
10.
The mitochondrial ADP/ATP carrier (AAC) is generally believed to function as a homodimer (Wt. Wt). It remains unknown whether the two monomers possess two independent but fully anticooperative channels or they form a single central channel for nucleotide transport. Here we generated fusion proteins consisting of two tandem covalent-linked AAC monomers and studied the kinetics of ADP/ATP transport in reconstituted proteoliposomes. Functional 64-kDa fusion proteins Wt-Wt and Wt-R294A (wild-type AAC linked to a mutant having low ATP transport activity) were expressed in mitochondria of yeast transformants. Compared to homodimer Wt. Wt, the fusion protein Wt-Wt retained the transport activity and selectivity of ADP versus ATP. The strongly divergent selectivities of Wt and R294A were partially propagated in the Wt-R294A fusion protein, suggesting a limited cooperativity during solute translocation. The rates of ADP or ATP transport were significantly higher than those predicted by the two-channel model. Fusion proteins for Wt-R204L (Wt linked to an inactive mutant) and R204L-Wt were not expressed in aerobically grown yeast cells, which contained plasmid rearrangements that regenerated the fully active 32-kDa homodimer Wt. Wt, suggesting that these fusion proteins are inactive in ADP/ATP transport. These results favor a single binding center gated pore model [Klingenberg, M. (1991) in A Study of Enzymes, Vol. 2: pp. 367-388] in which two AAC subunits cooperate for a coordinated ADP/ATP exchange through a single channel. 相似文献
12.
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants. 相似文献
13.
The expression of a key mitochondrial membrane component, the ADP/ATP carrier, was investigated in two aerobic yeast species, Kluyveromyces lactis and Schizosaccharomyces pombe. Although the two species differ very much in their respiratory capacity, the expression of the carrier in both yeast species was decreased under partially anaerobic conditions and was induced by nonfermentable carbon sources. The single ADP/ATP carrier encoding gene was deleted in S. pombe. The null mutant exhibits impaired growth properties, especially when cultivated at reduced oxygen tension, and is unable to grow on a nonfermentable carbon source. Our results suggest that the inability of K. lactis and S. pombe to grow under anaerobic conditions can be related in part to the absence of a functional ADP/ATP carrier due to repression of the corresponding gene expression. 相似文献
14.
The electrogenic transport of ATP and ADP by the mitochondrial ADP/ATP carrier (AAC) was investigated by recording transient currents with two different techniques for performing concentration jump experiments: 1) the fast fluid injection method: AAC-containing proteoliposomes were adsorbed to a solid supported membrane (SSM), and the carrier was activated via ATP or ADP concentration jumps. 2) BLM (black lipid membrane) technique: proteoliposomes were adsorbed to a planar lipid bilayer, while the carrier was activated via the photolysis of caged ATP or caged ADP with a UV laser pulse. Two transport modes of the AAC were investigated, ATP(ex)-0(in) and ADP(ex)-0(in). Liposomes not loaded with nucleotides allowed half-cycles of the ADP/ATP exchange to be studied. Under these conditions the AAC transports ADP and ATP electrogenically. Mg(2+) inhibits the nucleotide transport, and the specific inhibitors carboxyatractylate (CAT) and bongkrekate (BKA) prevent the binding of the substrate. The evaluation of the transient currents yielded rate constants of 160 s(-1) for ATP and >/=400 s(-1) for ADP translocation. The function of the carrier is approximately symmetrical, i.e., the kinetic properties are similar in the inside-out and right-side-out orientations. The assumption from previous investigations, that the deprotonated nucleotides are exclusively transported by the AAC, is supported by further experimental evidence. In addition, caged ATP and caged ADP bind to the carrier with similar affinities as the free nucleotides. An inhibitory effect of anions (200-300 mM) was observed, which can be explained as a competitive effect at the binding site. The results are summarized in a transport model. 相似文献
15.
The ADP/ATP carrier was studied by a fluorescent substrate, formycin diphosphate which is the only fluorescent ADP analogue to bind. Its low quantum yield, short decay time and spectral overlap with tryptophan has as yet prevented its wider use.By incorporating fluorescent acceptors of formycin diphosphate fluorescence, anthracene-maleimide and vinylanthracene, into the membrane, these difficulties were circumvented. Only bound formycin diphosphate transfers energy to the probes so that the secondary emission of these probes is a measure for membrane-bound formycin diphosphate.The fluorescent transfer is inhibited by ADP, bongkrekate and carboxy-atractylate whether added before or after incubation of formycin diphosphate showing that only binding to the adenine nucleotide carrier is measured. It also shows directly that the earlier demonstrated ADP fixation by bongkrekate is indeed a displacement into the matrix.The fluorescence decay time of the bound formycin diphosphate is measured as 1.95 ns compared to 0.95 ns of the free formycin diphosphate, indicating that formycin diphosphate is bound at the carrier in a non-polar environment.The depolarization decay time was found to be larger than 15 ns, indicating that carrier-bound formycin diphosphate is immobile within this time period. 相似文献
16.
The KlAAC gene, encoding the ADP/ATP carrier, has been assumed to be a single gene in Kluyveromyces lactis, an aerobic, petite-negative yeast species. The Klaac null mutation, which causes a respiratory-deficient phenotype, was fully complemented by AAC2, the Saccharomyces cerevisiae major gene for the ADP/ATP carrier and also by AAC1, a gene that is poorly expressed in S. cerevisiae. In this study, we demonstrate that the Klaac null mutation is partially complemented by the ScAAC3 gene, encoding the hypoxic ADP/ATP carrier isoform, whose expression in S. cerevisiae is prevented by oxygen. Once introduced into K. lactis, the AAC3 gene was expressed both under aerobic and under partial anaerobic conditions but did not support the growth of K. lactis under strict anaerobic conditions. 相似文献
17.
To detect structural changes in the second cytosolic loop of the mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae AAC2, we prepared 20 single cysteine mutants by replacing each amino acid in the S213 to L232 region. All single cysteine mutants were fully functional, because they could restore growth on glycerol of a yeast strain lacking functional ADP/ATP carriers. First, these single-Cys mutants were treated with carboxyatractyloside to lock the carrier in the cytosolic state or with bongkrekic acid to generate the matrix state, and then with the membrane-impermeable SH reagent eosin-5-maleimide (EMA) to probe accessibility. The amino acid residues S213C, L214C, F231C and L232C were not labeled, indicating that these 4 residues must have been buried in the membrane, whereas the region between residues K215 and S230 is accessible to labeling and must, therefore, have protruded into the aqueous phase. Residue L218C showed strong resistance against EMA labeling regardless of the state of the carrier, but the reason for such behavior is unclear. On the contrary, the labeling of the residues between F227C and S230C was strongly dependent on the state of the carrier. Thus, the C-terminal region of the second cytosolic loop in AAC2 changes its environment when the carrier cycles between the matrix and cytosolic state. 相似文献
18.
The mitochondrial ADP/ATP carrier plays a central role in aerobic cell energetics by providing to the cytosol the ATP generated by oxidative phosphorylation. Though discovered around 40 years ago owing to the existence of unique inhibitors and in spite of numerous experimental approaches, this carrier, which stands as a model of the mitochondrial solute carriers keeps some long-standing mystery. There are still open challenging questions among them the precise ADP/ATP transport mechanism, the functional oligomeric state of the carrier and relationships between human ADP/ATP carrier dysfunctioning and pathologies. Deciphering the 3D structure of this carrier afforded a considerable progress of the knowledge but requires now additional data focused on molecular dynamics from this static picture. State of the art in this topic is reviewed and debated in this paper in view of better comprehending origin of the discrepancies in these questions and, finally, the multiple physiological roles of this carrier in eukaryotic cell economy. 相似文献
19.
The ADP/ATP carrier (AAC) that facilitates the translocation of ATP made in mitochondria is inserted at the inner mitochondrial membrane by the TIM10-TIM22 protein import system. Here we addressed the state of the AAC precursor during insertion (stage IV of import) and identified residues of the carrier important for dimerization. By a combination of (i) import of a mix of His-tagged and untagged versions of AAC either 35S-labeled or unlabeled, (ii) import of a tandem covalent dimer AAC into wild-type mitochondria, and (iii) import of monomeric AAC into mitochondria expressing only the tandem covalent dimer AAC, we found that the stage IV intermediate is a monomer, and this stage is probably the rate-limiting step of insertion in the membrane. Subsequent dimerization occurs extremely rapidly (within less than a minute). The incoming monomer dimerizes with monomeric endogenous AAC suggesting that the AAC dimer is very dynamic. Conserved Cys residues were found not to affect insertion significantly, but they are crucial for the dimerization process to obtain a functional carrier. 相似文献
|