首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Fat is an atypical cadherin that controls both cell growth and planar polarity. Atrophin is a nuclear co-repressor that is also essential for planar polarity; however, it is not known what genes Atrophin controls in planar polarity, or how Atrophin activity is regulated during the establishment of planar polarity. We show that Atrophin binds to the cytoplasmic domain of Fat and that Atrophin mutants show strong genetic interactions with fat. We find that both Atrophin and fat clones in the eye have non-autonomous disruptions in planar polarity that are restricted to the polar border of clones and that there is rescue of planar polarity defects on the equatorial border of these clones. Both fat and Atrophin are required to control four-jointed expression. In addition our mosaic analysis demonstrates an enhanced requirement for Atrophin in the R3 photoreceptor. These data lead us to a model in which fat and Atrophin act twice in the determination of planar polarity in the eye: first in setting up positional information through the production of a planar polarity diffusible signal, and later in R3 fate determination.  相似文献   

9.
10.
11.
The Homer family of adaptor proteins consists of three members in mammals, and homologs are also known in other animals but not elsewhere. They are predominantly localized at the postsynaptic density in mammalian neurons and act as adaptor proteins for many postsynaptic density proteins. As a result of alternative splicing each member has several variants, which are classified primarily into the long and short forms. The long Homer forms are constitutively expressed and consist of two major domains: the amino-terminal target-binding domain, which includes an Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) homology 1 (EVH1) domain, and the carboxy-terminal self-assembly domain containing a coiled-coil structure and leucine zipper motif. Multimers of long Homer proteins, coupled through their carboxy-terminal domains, are thought to form protein clusters with other postsynaptic density proteins, which are bound through the amino-terminal domains. Such Homer-mediated clustering probably regulates or facilitates signal transduction or cross-talk between target proteins. The short Homer forms lack the carboxy-terminal domain; they are expressed in an activity-dependent manner as immediate-early gene products, possibly disrupting Homer clusters by competitive binding to target proteins. Homer proteins are also involved in diverse non-neural physiological functions.  相似文献   

12.
13.
14.
Mutations in genes encoding polycystin-1 (PC1) and polycystin-2 cause autosomal dominant polycystic kidney disease. The polycystin protein family is composed of Ca2+-permeable pore-forming subunits and receptor-like integral membrane proteins. Here we describe a novel member of the polycystin-1-like subfamily, polycystin-1L2 (PC1L2), encoded by PKD1L2, which has various alternative splicing forms with two translation initiation sites. PC1L2 short form starts in exon 12 of the long form. The longest open reading frame of PKD1L2 short form, determined from human testis cDNA, encodes a 1775-amino-acid protein and 32 exons, whereas the long form is predicted to encode a 2460-residue protein. Both forms have a small receptor for egg jelly domain, a G-protein-coupled receptor proteolytic site, an LH2/PLAT, and 11 putative transmembrane domains, as well as a number of rhodopsin-like G-protein-coupled receptor signatures. RT-PCR analysis shows that the short form, but not the long form, of human PKD1L2 is expressed in the developing and adult heart and kidney. Furthermore, by GST pull-down assay we observed that PC1L2 and polycystin-1L1 are able to bind to specific G-protein subunits. We also show that PC1 C-terminal cytosolic domain binds to Galpha12, Galphas, and Galphai1, while it weakly interacts with Galphai2. Our results indicate that both PC1-like molecules may act as G-protein-coupled receptors.  相似文献   

15.
16.
17.
18.
19.
20.
The metacaspase Mca1 from Saccharomyces cerevisiae displays a Q/N-rich region at its N-terminus reminiscent of yeast prion proteins. In this study, we show that the ability of Mca1 to form insoluble aggregates is modulated by a peptide stretch preceding its putative prion-forming domain. Based on its genomic locus, three potential translational start sites of Mca1 can give rise to two slightly different long Mca1 proteins or a short version, Mca1451/453 and Mca1432, respectively, although under normal physiological conditions Mca1432 is the predominant form expressed. All Mca1 variants exhibit the Q/N-rich regions, while only the long variants Mca1451/453 share an extra stretch of 19 amino acids at their N-terminal end. Strikingly, only long versions of Mca1 but not Mca1432 revealed pronounced aggregation in vivo and displayed prion-like properties when fused to the C-terminal domain of Sup35 suggesting that the N-terminal peptide element promotes the conformational switch of Mca1 protein into an insoluble state. Transfer of the 19 N-terminal amino acid stretch of Mca1451 to the N-terminus of firefly luciferase resulted in increased aggregation of luciferase, suggesting a protein destabilizing function of the peptide element. We conclude that the aggregation propensity of the potential yeast prion protein Mca1 in vivo is strongly accelerated by a short peptide segment preceding its Q/N-rich region and we speculate that such a conformational switch might occur in vivo via the usage of alternative translational start sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号