首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood flow in a stenosed tube has been modeled in the present studies. Blood flow is assumed to be represented by a couple stress fluid. Flow parameters such as velocity, resistance to flow, and shear stress distribution have been computed for different suspension concentrations (haematocrit), and for the blood diseases; polycythemia, plasma cell dyscrasias, and for Hb SS (sickle cell). The results have been compared with the case of normal blood and for other theoretical models. The importance of size effects in blood flow studies has been highlighted.  相似文献   

2.
The effects of polar nature of blood and pulsatility on flow through a stenosed tube have been analysed by assuming blood as a micropolar fluid. Linearized solutions of basic equations are obtained through consecutive applications of finite Hankel and Laplace transforms. The analytical expressions for axial and particle angular velocities, wall shear stress, resistance to flow and apparent viscosity have been obtained. The axial velocity profiles for Newtonian and micropolar fluids have been compared. The interesting observation of this analysis is velocity, in certain parts of cycle, for micropolar fluid is higher than Newtonain fluid. Variation of apparent viscosity eta a with tube radius shows both inverse Fahraeus-Lindqvist and Fahraeus-Lindqvist effects. Finally, the resistance to flow and wall shear stress for normal and diseased blood have been computed and compared.  相似文献   

3.
P Chaturani  R P Samy 《Biorheology》1986,23(5):499-511
The effects of non-Newtonian nature of blood and pulsatility on flow through a stenosed tube have been investigated. A perturbation method is used to analyse the flow. It is of interest to note that the thickness of the viscous flow region is non-uniform (changing with axial distance). An analytic relation between viscous flow region thickness and red cell concentration has been obtained. It is important to mention that some researchers have obtained an approximate solution for the flow rate-pressure gradient equation (assuming the ratio between the yield stress and the wall shear to be very small in comparison to unity); in the present analysis, we have obtained an exact solution for this non-linear equation without making that assumption. The approximate and exact solutions compare well with one of the exact solutions. Another important result is that the mean and steady flow rates decrease as the yield stress theta increases. For the low values of the yield stress, the mean flow rate is higher than the steady flow rate, but for high values of the yield stress, the mean flow rate behaviour is of opposite nature. The critical value of the yield stress at which the flow rate behaviour changes from one type to another has been determined. Further, it seems that there exists a value of the yield stress at which flow stops for both the flows (steady and pulsatile). It is observed that the flow stop yield value for pulsatile flow is lower than the steady flow. The most notable result of pulsatility is the phase lag between the pressure gradient and flow rate, which is further influenced by the yield stress and stenosis. Another important result of pulsatility is the mean resistance to flow is greater than its steady flow value, whereas the mean value of the wall shear for pulsatile flow is equal to steady wall shear. Many standard results regarding Casson and Newtonian fluids flow, uniform tube flow and steady flow can be obtained as the special cases of the present analysis. Finally, some applications of this theoretical analysis have been cited.  相似文献   

4.
Flow of couple stress fluid through stenotic blood vessels   总被引:3,自引:0,他引:3  
The effects of an axially symmetric mild stenosis on the flow of blood, when blood is represented by a couple stress fluid model, have been studied. It is found that, for a fixed stenosis size, the resistance to flow and wall shear stress increase as the couple stress parameter eta decreases from unity. A comparison of the results with those of the Newtonian case shows that the magnitude of resistance to flow and wall shear under a given set of conditions, is greater in the case of the couple stress fluid model. It is seen that even in the case of a mild stenosis (19% area reduction), resistance to flow and wall shear values are increased over those for no stenosis by 60% and 62%, respectively, when compared with the case of a Newtonian fluid.  相似文献   

5.
Local hemodynamics has been identified as one main determinant in the onset and progression of atherosclerotic lesions at coronary bifurcations. Starting from the observation that atherosensitive hemodynamic conditions in arterial bifurcation are majorly determined by the underlying anatomy, the aim of the present study is to investigate how peculiar coronary bifurcation anatomical features influence near-wall and intravascular flow patterns. Different bifurcation angles and cardiac curvatures were varied in population-based, idealized models of both stenosed and unstenosed bifurcations, representing the left anterior descending (LAD) coronary artery with its diagonal branch. Local hemodynamics was analyzed in terms of helical flow and exposure to low/oscillatory shear stress by performing computational fluid dynamics simulations.Results show that bifurcation angle impacts lowly hemodynamics in both stenosed and unstenosed cases. Instead, curvature radius influences the generation and transport of helical flow structures, with smaller cardiac curvature radius associated to higher helicity intensity. Stenosed bifurcation models exhibit helicity intensity values one order of magnitude higher than the corresponding unstenosed cases. Cardiac curvature radius moderately affects near-wall hemodynamics of the stenosed cases, with smaller curvature radius leading to higher exposure to low shear stress and lower exposure to oscillatory shear stress. In conclusion, the proposed controlled benchmark allows investigating the effect of various geometrical features on local hemodynamics at the LAD/diagonal bifurcation, highlighting that cardiac curvature influences near wall and intravascular hemodynamics, while bifurcation angle has a minor effect.  相似文献   

6.
The distributions of mass transfer rate and wall shear stress in sinusoidal laminar pulsating flow through a two-dimensional asymmetric stenosed channel have been studied experimentally and numerically. The distributions are measured by the electrochemical method. The measurement is conducted at a Reynolds number of about 150, a Schmidt number of about 1000, a nondimensional pulsating frequency of 3.40, and a nondimensional flow amplitude of 0.3. It is suggested that the deterioration of an arterial wall distal to stenosis may be greatly enhanced by fluid dynamic effects.  相似文献   

7.
Pulsatile flow was studied in physiologically realistic models of a normal and a moderately stenosed (30% diameter reduction) human carotid bifurcation. Time-resolved velocity measurements were made using magnetic resonance imaging, from which wall shear stress (WSS) vectors were calculated. Velocity measurements in the inflow and outflow regions were also used as boundary conditions for a computational fluid dynamics (CFD) model. Experimental flow patterns and derived WSS vectors were compared qualitatively with the corresponding CFD predictions. In the stenosed phantom, flow in the bulb region of the "internal carotid artery" was concentrated along the outer wall, with a region of low and recirculating flow near the inner wall. In the normal phantom, the converse was found, with a low flow region near the outer wall of the bulb. Time-averaged WSS and oscillatory shear index were also markedly different for the two phantoms.  相似文献   

8.
The main purpose of this article is to demonstrate that principal component analysis (PCA) and partial least squares regression (PLSR) can be used to extract information from particle size distribution data and predict rheological properties. Samples from commercially relevant Aspergillus oryzae fermentations conducted in 550 L pilot scale tanks were characterized with respect to particle size distribution, biomass concentration, and rheological properties. The rheological properties were described using the Herschel-Bulkley model. Estimation of all three parameters in the Herschel-Bulkley model (yield stress (tau(y)), consistency index (K), and flow behavior index (n)) resulted in a large standard deviation of the parameter estimates. The flow behavior index was not found to be correlated with any of the other measured variables and previous studies have suggested a constant value of the flow behavior index in filamentous fermentations. It was therefore chosen to fix this parameter to the average value thereby decreasing the standard deviation of the estimates of the remaining rheological parameters significantly. Using a PLSR model, a reasonable prediction of apparent viscosity (micro(app)), yield stress (tau(y)), and consistency index (K), could be made from the size distributions, biomass concentration, and process information. This provides a predictive method with a high predictive power for the rheology of fermentation broth, and with the advantages over previous models that tau(y) and K can be predicted as well as micro(app). Validation on an independent test set yielded a root mean square error of 1.21 Pa for tau(y), 0.209 Pa s(n) for K, and 0.0288 Pa s for micro(app), corresponding to R(2) = 0.95, R(2) = 0.94, and R(2) = 0.95 respectively.  相似文献   

9.
Leukocyte adhesion through L-selectin to peripheral node addressin (PNAd, also known as MECA-79 antigen), an L-selectin ligand expressed on high endothelial venules, has been shown to require a minimum level of fluid shear stress to sustain rolling interactions (Finger, E.B., K.D. Puri, R. Alon, M.B. Lawrence, V.H. von Andrian, and T.A. Springer. 1996. Nature (Lond.). 379:266–269). Here, we show that fluid shear above a threshold of 0.5 dyn/cm2 wall shear stress significantly enhances HL-60 myelocyte rolling on P- and E-selectin at site densities of 200/μm2 and below. In addition, gravitational force is sufficient to detach HL60 cells from P- and E-selectin substrates in the absence, but not in the presence, of flow. It appears that fluid shear–induced torque is critical for the maintenance of leukocyte rolling. K562 cells transfected with P-selectin glycoprotein ligand-1, a ligand for P-selectin, showed a similar reduction in rolling on P-selectin as the wall shear stress was lowered below 0.5 dyn/cm2. Similarly, 300.19 cells transfected with L-selectin failed to roll on PNAd below this level of wall shear stress, indicating that the requirement for minimum levels of shear force is not cell type specific. Rolling of leukocytes mediated by the selectins could be reinitiated within seconds by increasing the level of wall shear stress, suggesting that fluid shear did not modulate receptor avidity. Intravital microscopy of cremaster muscle venules indicated that the leukocyte rolling flux fraction was reduced at blood centerline velocities less than 1 mm/s in a model in which rolling is mediated by L- and P-selectin. Similar observations were made in L-selectin–deficient mice in which leukocyte rolling is entirely P-selectin dependent. Leukocyte adhesion through all three selectins appears to be significantly enhanced by a threshold level of fluid shear stress.  相似文献   

10.
A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.  相似文献   

11.
Blood flow in small curved tubes is modeled by the two-fluid model where a relatively cell-free fluid layer envelops a fluid core of higher viscosity. The parameters in the model are successfully curve fitted to experimental data for straight tubes. The curved tube equations are then solved by perturbation theory. It was found that curvature in general lowers the tube resistance, but increases the shear stress near the inside wall.  相似文献   

12.
The present study deals with an appropriate mathematical model of an artery in the presence of constriction in which the generated wall shear stress due to blood flow is analysed. The geometry of the stenosed arterial segment in the diseased state, causing malfunction of the cardiovascular system, is formed mathematically. The flowing blood contained in the stenosed artery is treated as non-Newtonian and the flow is considered to be two-dimensional. The motion of the arterial wall and its effect on local fluid mechanics is not ruled out from the present pursuit. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier–Stokes equations for non-Newtonian fluids. The flow-field can be obtained primarily following the radial coordinate transformation, using the appropriate boundary conditions and finally adopting a suitable finite difference scheme numerically. The influences of flow unsteadiness, the arterial wall distensibility and the presence of stenosis on the flow-field and the wall shear stresses are quantified in order to indicate the susceptibility to atherosclerotic lesions and thereby to validate the applicability of the present theoretical model.  相似文献   

13.
The accumulation of low-density lipoprotein (LDL) is recognized as one of the main contributors in atherogenesis. Mathematical models have been constructed to simulate mass transport in large arteries and the consequent lipid accumulation in the arterial wall. The objective of this study was to investigate the influences of wall shear stress and transmural pressure on LDL accumulation in the arterial wall by a multilayered, coupled lumen-wall model. The model employs the Navier-Stokes equations and Darcy's Law for fluid dynamics, convection-diffusion-reaction equations for mass balance, and Kedem-Katchalsky equations for interfacial coupling. To determine physiologically realistic model parameters, an optimization approach that searches optimal parameters based on experimental data was developed. Two sets of model parameters corresponding to different transmural pressures were found by the optimization approach using experimental data in the literature. Furthermore, a shear-dependent hydraulic conductivity relation reported previously was adopted. The integrated multilayered model was applied to an axisymmetric stenosis simulating an idealized, mildly stenosed coronary artery. The results show that low wall shear stress leads to focal LDL accumulation by weakening the convective clearance effect of transmural flow, whereas high transmural pressure, associated with hypertension, leads to global elevation of LDL concentration in the arterial wall by facilitating the passage of LDL through wall layers.  相似文献   

14.
在细小血管中,由于血细胞明显的趋轴效应,管中的血液分为两个不同的区域,即具有血细胞的核心区和邻近管壁和血浆层。应用两相分层流模型,研究在相同的流量和管径下,当核心区中的血液分别为牛顿流体和Casson流体时,不同的血浆层厚度对细小血管壁剪应力和剪应力梯度的影响。结果表明,血浆层的存在对壁剪应力和壁剪应力梯度有较大影响,当血浆层厚度仅为血管半径的1%和3%时,壁剪应力梯度分别下降约10%和20%。  相似文献   

15.
This article deals with the introduction of the modified Casson's fluid model as the true representation for the blood for the steady laminar flow through a small diameter artery with axi-symmetric identical double stenoses in series. The governing equations are solved by using the finite element method. The results for the velocity profiles, the pressure and the wall shear stress distributions in addition to the location and length of the flow reversal zones have been brought out and discussed in reference to the severity of the disease. It has been observed that the non-Newtonian nature of the blood helps in reducing the magnitude of the peak wall shear stress at the throat and the length of the reversed flow regions in the post stenotic dilatation.  相似文献   

16.
In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50< or =Re(m) < or =300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG), time-average wall shear stress (tau(w)*), and time-average Wall Shear Stress Gradient WSSG*. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

17.
In the present study, theoretical formulations for calculation of optimal bifurcation angle and relationship between the diameters of mother and daughter vessels using the power law model for non-Newtonian fluids are developed. The method is based on the distribution of wall shear stress in the mother and daughter vessels. Also, the effect of distribution of wall shear stress on the minimization of energy loss and flow resistance is considered. It is shown that constant wall shear stress in the mother and daughter vessels provides the minimum flow resistance and energy loss of biological flows. Moreover, the effects of different wall shear stresses in the mother and daughter branches, different lengths of daughter branches in the asymmetric bifurcations and non-Newtonian effect of biological fluid flows on the bifurcation angle and the relationship between the diameters of mother and daughter branches are considered. Using numerical simulations for non-Newtonian models such as power law and Carreau models, the effects of optimal bifurcation angle on the pressure drop and flow resistance of blood flow in the symmetric bifurcation are investigated. Numerical simulations show that optimal bifurcation angle decreases the pressure drop and flow resistance especially for bifurcations at large Reynolds number.  相似文献   

18.
Chen J  Lu XY  Wang W 《Journal of biomechanics》2006,39(11):1983-1995
Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.  相似文献   

19.
Three-dimensional numerical calculations of mild and moderate stenosed blood vessels have been performed. Large eddy simulation through a dynamic subgrid scale Smagorinsky model is applied to model the transitional and turbulent pulsatile flow. For the compliant stenosed model, fluid-structure interaction is realized through a two-way coupling between the fluid flow and the deforming vessel through the change in the external diameter due to the increment of circumferential pressure via a novel moving boundary approach. Model predictions compare very well against measured and numerical data for the centerline velocities, thickness of the flow separation zones and radial wall displacements.  相似文献   

20.
Parametric geometry exploration of the human carotid artery bifurcation   总被引:1,自引:0,他引:1  
A parametric computational model of the human carotid artery bifurcation is employed to demonstrate that it is only necessary to simulate approximately one-half of a single heart pulse when performing a global exploration of the relationships between shear stress and changes in geometry. Using design of experiments and surface fitting techniques, a landscape is generated that graphically depicts these multi-dimensional relationships. Consequently, whilst finely resolved, grid and pulse independent results are traditionally demanded by the computational fluid dynamics (CFD) community, this strategy demonstrates that it is possible to efficiently detect the relative impact of different geometry parameters, and to identify good and bad regions of the landscape by only simulating a fraction of a single pulse. Also, whereas in the past comparisons have been made between the distributions of appropriate shear stress metrics, such as average wall shear stress and oscillatory shear index, this strategy requires a figure of merit to compare different geometries. Here, an area-weighted integral of negative time-averaged shear stress, tau , is used as the principal objective function, although the discussion reveals that the extent as well as the intensity of reverse flow may be important. Five geometry parameters are considered: the sinus bulb width, the angles and the outflow diameters of the internal carotid artery (ICA) and external carotid artery (ECA). A survey of the landscape confirms that bulb shape has the dominant effect on tau with maximum tau occurring for large bulb widths. Also, it is shown that different sets of geometric parameters can produce low values of tau by either relatively small intense areas, or by larger areas of less intense reverse flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号