首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5′ overhanging adenosine ends, such as the 3′-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5′ overhanging adenosine of the 3′-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5′-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.  相似文献   

2.
Escherichia coli DNA topoisomerase I catalyzes interconversions of different DNA topological isomers by the breakage and rejoining of DNA phosphodiester bonds. It has a crucial role in maintaining an optimal DNA superhelicity in E. coli. It is a single polypeptide of 864 amino acids. Analysis of the amino acid sequence reveals three tandem repeat units each containing two pairs of cysteines suggesting that each unit may form a zinc-binding domain. We have determined that each enzyme molecule contains three to four zinc atoms using inductively coupled plasma-atomic emission analysis. Modification of the cysteine residues and removal of the zinc from the enzyme result in loss of activity. Zinc ions are needed for full recovery of enzyme activity when the cysteine modification is reversed. Comparison with the zinc-binding domains of the sequence-specific DNA-binding proteins shows significant differences.  相似文献   

3.
Polynucleotide: adenosine glycosidases (PNAG) are a class of plant and bacterial enzymes commonly known as ribosome-inactivating proteins (RIP). They are presently classified as rRNA N-glycosidases in the enzyme nomenclature [EC 3.2.2.22]. Several activities on nucleic acids, other than depurination, have been attributed to PNAG: in particular modifications induced in circular plasmids, including linearisation and topological changes, and cleavage of guanidinic residues. Here we describe a chromatographic procedure to obtain nuclease-free PNAG by dye-chromatography onto Procion Red derivatized Sepharose((R)). Highly purified enzymes depurinate extensively pBR322 circular, supercoiled DNA at neutral pH and exhibit neither DNase nor DNA glycolyase activities, do not cause topological changes, and adenine is the only base released from DNA and rRNA, even at very high enzyme concentrations. A scanning force microscopy (SFM) study of pBR322 treated with saporin-S6 confirmed that (i) this PNAG binds extensively to the plasmid, (ii) the distribution of the bound saporin-S6 molecules along the DNA chain is markedly variable, (iii) plasmids already digested with saporin-S6 do not appear fragmented or topologically modified. The observations here described demonstrate that polynucleotide:adenosine glycosidase is the sole enzymatic activity of the four ribosome-inactivating proteins gelonin, momordin I, pokeweed antiviral protein from seeds and saporin-S6. These proteins belong to different families, suggesting that the findings here described may be generalized to all PNAG.  相似文献   

4.
Relationship between the topological indices and anti-HIV activity of Dihydro (alkylthio) (naphthylmethyl) oxopyrimidines has been investigated. Three topological indices--the Wiener's index--a distance-based topological index, molecular connectivity index--an adjacency based topological index and eccentric connectivity index--an adjacency-cum-distance based topological index were used for the present investigations. A data set comprising of 67 analogues of dihydro (alkylthio) (naphthylmethyl) oxopyrimidine (S-DABO) was selected for the present investigations. The values of the Wiener's index, molecular connectivity index and eccentric connectivity index for each of the 67 compounds comprising the data set were computed using an in house computer program. Resultant data were subsequently analyzed and suitable models were developed after identification of active ranges. Subsequently, a biological activity was assigned to each compound using these models, which was then compared with the reported anti-HIV activity. The use of models based upon these topological indices resulted in prediction of anti-HIV activity with an accuracy ranging from 86% to 89%.  相似文献   

5.
6.
The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the construction of in vivo selection systems. We have isolated the asd, dapA, dapB, dapD, and dapE genes involved in the DAP biosynthetic pathway of Mycobacterium bovis BCG. These genes were isolated by complementation of Escherichia coli mutations with an expression library of BCG DNA. Our analysis of these genes suggests that BCG may use more than one pathway for biosynthesis of DAP. The nucleotide sequence of the BCG dapB gene was determined. The activity of the product of this gene in Escherichia coli provided evidence that the gene may encode a novel bifunctional dihydrodipicolinate reductase and DAP dehydrogenase.  相似文献   

7.
Single molecule experiments have demonstrated a progressive transition from a B- to an L-form helix as DNA is gently stretched and progressively unwound. The particular sequence of a DNA segment defines both base stacking and hydrogen bonding that affect the partitioning and conformations of the two phases. Naturally or artificially modified bases alter H-bonds and base stacking and DNA with diaminopurine (DAP) replacing adenine was synthesized to produce linear fragments with triply hydrogen-bonded DAP:T base pairs. Both unmodified and DAP-substituted DNA transitioned from a B- to an L-helix under physiological conditions of mild tension and unwinding. This transition avoids writhing and the ease of this transition may prevent cumbersome topological rearrangements in genomic DNA that would require topoisomerase activity to resolve. L-DNA displayed about tenfold lower persistence length than B-DNA. However, left-handed DAP-substituted DNA was twice as stiff as unmodified L-DNA. Unmodified DNA and DAP-substituted DNA have very distinct mechanical characteristics at physiological levels of negative supercoiling and tension.  相似文献   

8.
A topological comparison of the two helix destabilizing proteins, pancreatic ribonuclease A and the gene 5 DNA binding protein of bacteriophage fd has been completed utilizing the available high resolution tertiary structures of each protein. The results indicate these two proteins are structurally if not also evolutionarily related. Regions of closet topological equivalence occur between beta loops directly involved in nucleotide binding or are required for the maintenance of their respective oligonucleotide binding channels. In addition, there is a similar placement of critical amino acid side chains about the binding site. Further evidence for this structural relationship is obtained by comparison of structural data for the mode of complexation of polynucleotides to each protein. The results of topological comparison suggest the essential property shared by helix destabilizing proteins, whether specialized DNA binding proteins such as G5BP or proteins with other primary functional roles, like ribonuclease A, is the presence of an elongated oligonucleotide binding channel. Although ribonuclease A and G5BP are structurally related, it seems likely any protein with this structural feature will exhibit a helix destabilizing capacity. This conclusion is supported by the diversity of molecular characteristics shown by other proteins having this activity.  相似文献   

9.
The solution structure of one of the first members of the cyclotide family of macrocyclic peptides to be discovered, circulin B has been determined and compared with that of circulin A and related cyclotides. Cyclotides are mini-proteins derived from plants that have the characteristic features of a head-to-tail cyclised peptide backbone and a knotted arrangement of their three disulfide bonds. First discovered because of their uterotonic or anti-HIV activity, they have also been reported to have activity against a range of Gram positive and Gram negative bacteria as well as fungi. The aim of the current study was to develop structure-activity relationships to rationalise this antimicrobial activity. Comparison of cyclotide structures and activities suggests that the presence and location of cationic residues may be a requirement for activity against Gram negative bacteria. Understanding the topological differences associated with the antimicrobial activity of the cyclotides is of significant interest and potentially may be harnessed for pharmaceutical applications.  相似文献   

10.
11.
Human Topoisomerase II is present in two isoforms, 170KDa alpha and 180KDa beta. Both the isoforms play a crucial role in maintenance of topological changes during DNA replication and recombination. It has been shown that Topoisomerase II activity is required for HIV-1 replication and the enzyme is phosphorylated during early time points of HIV-1 replication. In the present study, we have studied the molecular action of Topoisomerase II inhibitors, azalactone ferrocene (AzaFecp), Thiomorpholide amido methyl ferrocene (ThioFecp), and Ruthenium benzene amino pyridine (Ru(ben)Apy) on cell proliferation and also on various events of HIV-1 replication cycle. The Topoisomerase II beta over-expressing neuroblastoma cell line shows a higher sensitivity to these compounds compared to the Sup-T1 cell line. All the three Topoisomerase II inhibitors show significant anti-HIV activity at nanomolar concentrations against an Indian isolate of HIV-1(93IN101) in Sup-T1 cell line. An analysis of action of these compounds on proviral DNA synthesis at 5h of post-infection shows that they inhibit proviral DNA synthesis as well as the formation of pre-integration complexes completely. Further analysis, using polymerase chain reaction and western blot, showed that both the Topoisomerase II alpha and beta isoforms are present in the pre-integration complexes, suggesting their significant role in HIV-1 replication.  相似文献   

12.
Pentapeptide repeats are a class of proteins characterized by the presence of multiple repeating sequences five amino acids in length. The sequences fold into a right-handed β-helix with a roughly square-shaped cross section. Pentapeptide repeat proteins include a number of examples which are thought to function as structural mimics of DNA and act to competitively bind to the type II topoisomerase DNA gyrase, an important antibacterial target. DNA gyrase-targeting pentapeptide repeat proteins can both inhibit DNA gyrase—a potentially useful therapeutic property—and contribute to resistance to quinolone antibacterials (by acting to prevent them forming a lethal complex with the DNA and enzyme). Pentapeptide repeat proteins are therefore of wide interest not only because of their unusual structure, function, and potential as an antibacterial target, but also because knowledge of their mechanism of action may lead to both a greater understanding of the details of DNA gyrase function as well as being a useful template for the design of new DNA gyrase inhibitors. However, many puzzling aspects as to how these DNA mimics function and indeed even their ability to act as DNA mimics itself remains open to question. This review summarizes the current state of knowledge regarding pentapeptide repeat proteins, focusing on those that are thought to mimic DNA, and speculates on potential structure-function relationships which may account for their differing specificities.  相似文献   

13.
Abstract

A topological comparison of the two helix destabilizing proteins, pancreatic ribonuclease A and the gene S DNA binding protein of bacteriophage fd has been completed utilizing the available high resolution tertiary structures of each protein. The results indicate these two proteins are structurally if not also evolutionarily related. Regions of closest topological equivalence occur between beta loops directly involved in nucleotide binding or are required for the maintenance of their respective oligonucleotide binding channels. In addition, there is a similar placement of critical amino acid side chains about the binding site. Further evidence for this structural relationship is obtained by comparison of structural data for the mode of complexation of polynucleotides to each protein. The results of topological comparison suggest the essential property shared by helix destabilizing proteins, whether specialized DNA binding proteins such as G5BP or proteins with other primary functional roles, like ribonuclease A, is the presence of an elongated oligonucleotide binding channel. Although ribonuclease A and G5BP are structurally related, it seems likely any protein with this structural feature will exhibit a helix destabilizing capacity. This conclusion is supported by the diversity of molecular characteristics shown by other proteins having this activity.  相似文献   

14.
花生(Arachis hypogaea L.)汕油71果针入土20d(20 DAP)的种子剥去种皮后,10%的胚可以萌发,至40 DAP发芽率达98%。不同发育时期的花生胚萌发 10d后子叶盐溶蛋白质和花生球蛋白降解表明,20和32 DAP胚萌发后,子叶中这些蛋白质只有部分降解。随着胚成熟度增加,子叶中降解这些蛋白质的能力不断提高。20~40 DAP胚萌发4d时,子叶的BAPAase和GHE活性较低。50~80DAP胚萌发 4d,子叶中上述两种酶均显示较高的活性。  相似文献   

15.
Utilizing overlapping fragment peptide libraries covering the whole sequence of an HIV-1 capsid (CA) protein with the addition of an octa-arginyl moiety, we had previously found several peptides with anti-HIV-1 activity. Herein, among these potent CA fragment peptides, CA-15L was examined because this peptide sequence overlaps with Helix 7, a helix region of the CA protein, which may be important for oligomerization of the CA proteins. A CA-15L surrogate with hydrophilic residues, and its derivatives, in which amino acid sequences are shifted toward the C-terminus by one or more residues, were synthesized and their anti-HIV activity was evaluated. In addition, its derivatives with substitution for the Ser149 residue were synthesized and their anti-HIV activity was evaluated because Ser149 might be phosphorylated in the step of degradation of CA protein oligomers. Several active compounds were found and might become new anti-HIV agents and new tools for elucidation of CA functions.  相似文献   

16.
ZYMV-AGII (zucchini yellow mosaic virus-AGII) is a recombinant nonpathogenic potyvirus-based vector system for the expression of foreign genes in cucurbit plants and their edible fruits, including squash, cucumber, melon, watermelon, and pumpkin. MAP30 (Momordica anti-HIV protein, 30 kDa) and GAP31 (Gelonium anti-HIV protein 31 kDa) are multifunctional plant proteins with activity against HIV-1 virus. These proteins are also effective against other viruses, tumor cells, and microbes. We report here the production and characterization of biologically active MAP30 and GAP31 in squash plant by expression of their genes using the ZYMV-AGII vector. Recombinant expressed MAP30 and GAP31 exhibit comparable antiviral, antitumor, and antimicrobial activities as their counterparts from their original plant sources, with EC(50)s in the ranges of 0.2-0.3 nM for HIV-1. These results demonstrate for the first time the amplification and production of therapeutic proteins, MAP30 and GAP31, in common vegetables. This provides valuable alternative food sources of these antiviral, antitumor, and antimicrobial agents for therapeutic applications.  相似文献   

17.
Previous studies have shown that acylated plasma and milk proteins with increased negative charge, derived from various animal and human sources, are potent anti-HIV compounds. The antiviral effects seemed to correlate positively with the number of negative charges introduced into the various polypeptides: proteins with a high content of basic amino acids in which all of the available epsilonNH2 groups were anionized yielded the most potent anti-HIV compounds. It remained unclear however whether the total net negative charge of the various derivatized proteins, or rather the charge density on the protein backbone, is essential for the observed anti-HIV activity. Earlier studies have shown that acylated albumins preferentially block the process of HIV/cell fusion through binding to the HIV envelope proteins gp120 and gp41 as well as to the cell surface of the HIV target cells. Some of these polyanionic proteins have been shown to interfere also with the gp120-CD4 mediated virus/cell binding. The relative contribution of these effects to the anti-HIV activity may depend both on the total negative charge introduced as well as the hydrophobicity of the acylating reagent added to the particular proteins. In this study we show that the higher the charge density of the derivatized proteins, the more potent their HIV replication inhibiting effects are. In contrast, the addition of positive charge to the studied plasma and milk proteins through amination resulted in a reduced anti-HIV activity but a clearly increased anti-HCMV activity, with IC50 values in the low micromolar concentration range. Interestingly, native lactoferrin (Lf) was antivirally active against both HIV and HCMV. Acylation or amination of Lf increased the anti-HIV and anti-HCMV activity, respectively. The N-terminal portion of Lf appeared essential for its anti-HCMV effect: N-terminal deletion variants of human Lf were less active against HCMV. Circular dichroism of the modified proteins showed that the secondary structure of the tested proteins was only moderately influenced by acylation and/or covalent attachment of drugs, making these (derivatized) proteins useful candidates as antiviral agents and/or intrinsically active drug carriers. The relatively simple chemical derivatization as well as the abundant sources of blood plasma and milk proteins provides attractive opportunities for the preparation of potent and relatively cheap antiviral agents for systemic or local applications.  相似文献   

18.
DAP epimerase is the penultimate enzyme in the lysine biosynthesis pathway. The most versatile assay for DAP epimerase catalytic activity employs a coupled DAP epimerase–DAP dehydrogenase enzyme system with a commercial mixture of DAP isomers as substrate. DAP dehydrogenase converts meso-DAP to THDP with concomitant reduction of NADP+ to NADPH. We show that at high concentrations, accumulation of NADPH results in inhibition of DAPDH, resulting in spurious kinetic data. A new assay has been developed employing DAP decarboxylase that allows the reliable characterisation of DAP epimerase enzyme kinetics.  相似文献   

19.
The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes.  相似文献   

20.
The interaction between highly purified poly(ADP-ribose) polymerase from calf thymus and different topological forms of pBR322 DNA has been studied by gel retardation electrophoresis and electron microscopy. We show that: (i) in the absence of nicks on DNA the enzyme has a marked affinity for supercoiled (form I) DNA, (ii) in the presence of single stranded breaks poly(ADP-ribose) polymerase preferentially binds to form II, (iii) in all cases enzyme molecules are frequently located at DNA intersections, (iv) a cooperative binding of the enzyme on DNA occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号