首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used Tn5 mutagenesis to obtain a mutant resistant to pyocin Sa. When grown in iron-deficient succinate medium this mutant lacked an 85-kDa iron-regulated outer membrane protein (IROMP), and expression of a 75-kDa IROMP was increased compared with that in the parent strain. The mutant was deficient in pyoverdin biosynthesis and showed a 95% decrease in transport of ferripyoverdin purified from the parent strain, suggesting that the 85-kDa IROMP is the specific receptor for ferripyoverdin and pyocin Sa. The mutant compensated for the deficiency in pyoverdin biosynthesis and transport by exhibiting a fourfold increase in ferripyochelin transport. The low-level transport of ferripyoverdin in the Sa-resistant mutant, which extended to heterologous pyoverdins from other strains, suggests that Pseudomonas aeruginosa has a second ferripyoverdin uptake system of lower affinity and broader specificity.  相似文献   

2.
Zinc concentrations ranging between 0.1 and 1 mm only slightly reduced maximal growth of wild-type Pseudomonas aeruginosa 7NSK2 in iron-limiting casamino acid medium, but had a clear negative effect on the growth of mutant MPFM1 (pyoverdin negative) and especially mutant KMPCH (pyoverdin and pyochelin negative). Production of pyoverdin by wild-type strain 7NSK2 was significantly increased in the presence of 0.5 mm zinc and could not be repressed by iron even at a concentration of 100 m. Siderophore detection via isoelectrofocusing revealed that mutant KMPCH did not produce any siderophores, while mutant MPFM1 overproduced a siderophore with an acidic isoelectric point, most likely pyochelin. Pyochelin production by MPFM1 was stimulated by the presence of zinc in a similar way as pyoverdin for the wild-type. Analysis of outer membrane proteins revealed that three iron regulated outer membrane proteins (IROMPs) (90, 85 and 75 kDa) were induced by iron deficiency in the wild-type, while mutants were found to have altered IROMP profiles. Zinc specifically enhanced the production of a 85 kDa IROMP in 7NSK2, a 75 kDa IROMP in MPFM1 and a 90 kDa IROMP in KMPCH.  相似文献   

3.
A purified polyclonal antiserum directed against the isolated main 80 kD IROMP (iron-regulated outer-membrane protein) from Pseudomonas aeruginosa PAO1 detected only the 80 kD polypeptide of outer-membrane proteins from PAO1 cells grown in iron deficiency in Western blots. It was also shown to inhibit the uptake of 59Fe pyoverdin by PAO1 cells as well as its binding to purified outer membranes. Immunofluorescence experiments with intact PAO1 cells confirmed that the receptor is present only at the surface of cells grown under conditions of iron deficiency. All these data allow us to conclude that the 80 kD main IROMP of P. aeruginosa is indeed the receptor for the siderophore ferripyoverdin.  相似文献   

4.
Pseudomonas aeruginosa synthesizes two siderophores, pyochelin and pyoverdin, characterized by widely different structures, physicochemical properties, and affinities for Fe(III). Titration experiments showed that pyochelin, which is endowed with a relatively low affinity for Fe(III), binds other transition metals, such as Cu(II), Co(II), Mo(VI), and Ni(II), with appreciable affinity. In line with these observations, Fe(III) and Co(II) at 10 microM or Mo(VI), Ni(II), and Cu(II) at 100 microM repressed pyochelin synthesis and reduced expression of iron-regulated outer membrane proteins of 75, 68, and 14 kDa. In contrast, pyoverdin synthesis and expression of the 80-kDa receptor protein were affected only by Fe(III). All of the metals tested, except Mo(VI), significantly promoted P. aeruginosa growth in metal-poor medium; Mo(VI), Ni(II), and Co(II) were more efficient as pyochelin complexes than the free metal ions and the siderophore. The observed correlation between the affinity of pyochelin for Fe(III), Co(II), and Mo(VI) and the functional effects of these metals indicates that pyochelin may play a role in their delivery to P. aeruginosa.  相似文献   

5.
Pseudomonas aeruginosa synthesizes two siderophores, pyochelin and pyoverdin, characterized by widely different structures, physicochemical properties, and affinities for Fe(III). Titration experiments showed that pyochelin, which is endowed with a relatively low affinity for Fe(III), binds other transition metals, such as Cu(II), Co(II), Mo(VI), and Ni(II), with appreciable affinity. In line with these observations, Fe(III) and Co(II) at 10 microM or Mo(VI), Ni(II), and Cu(II) at 100 microM repressed pyochelin synthesis and reduced expression of iron-regulated outer membrane proteins of 75, 68, and 14 kDa. In contrast, pyoverdin synthesis and expression of the 80-kDa receptor protein were affected only by Fe(III). All of the metals tested, except Mo(VI), significantly promoted P. aeruginosa growth in metal-poor medium; Mo(VI), Ni(II), and Co(II) were more efficient as pyochelin complexes than the free metal ions and the siderophore. The observed correlation between the affinity of pyochelin for Fe(III), Co(II), and Mo(VI) and the functional effects of these metals indicates that pyochelin may play a role in their delivery to P. aeruginosa.  相似文献   

6.
The siderophore pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation whereas the second cysteine remains in its L-configuration, thus determining the stereochemistry of the two interconvertible pyochelin diastereoisomers as 4'R, 2'R, 4'R (pyochelin I) and 4'R, 2'S, 4'R (pyochelin II). Pseudomonas fluorescens CHA0 was found to make a different stereoisomeric mixture, which promoted growth under iron limitation in strain CHA0 and induced the expression of its biosynthetic genes, but was not recognized as a siderophore and signaling molecule by P. aeruginosa. Reciprocally, pyochelin promoted growth and induced pyochelin gene expression in P. aeruginosa, but was not functional in P. fluorescens. The structure of the CHA0 siderophore was determined by mass spectrometry, thin-layer chromatography, NMR, polarimetry, and chiral HPLC as enantio-pyochelin, the optical antipode of the P. aeruginosa siderophore pyochelin. Enantio-pyochelin was chemically synthesized and confirmed to be active in CHA0. Its potential biosynthetic pathway in CHA0 is discussed.  相似文献   

7.
Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of (59)Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdine-deficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine.  相似文献   

8.
The plant growth-promoting rhizobacterium Pseudomonas aeruginosa 7NSK2 produces three siderophores when iron is limited: the yellow-green fluorescent pyoverdin, the salicylate derivative pyochelin, and salicylic acid. This Pseudomonas strain was shown to be an efficient antagonist of Pythium-induced damping-off. The role of pyoverdin and pyochelin in the suppression of Pythium splendens was investigated by using various siderophore-deficient mutants derived from P. aeruginosa 7NSK2 in a bioassay with tomato (Lycopersicon esculentum). To provide more insight into the role of pyochelin in antagonism, mutant KMPCH, deficient in the production of pyoverdin and pyochelin, was complemented for pyochelin production. The complementing clone was further characterized by subcloning and transposon mutagenesis and used to generate a pyochelin-negative, pyoverdin-positive mutant by marker exchange. All mutants were able to reduce Pythium-induced preemergence damping-off to some extent. Production of either pyoverdin or pyochelin proved to be necessary to achieve wild-type levels of protection against Pythium-induced postemergence damping-off. Mutant KMPCH inhibited P. splendens but was less active than the parental strain. This residual protection could be due to the production of salicylic acid. Since pyoverdin and pyochelin are both siderophores, siderophore-mediated iron competition could explain the observed antagonism and the apparent interchangeability of the two compounds. We cannot, however, exclude the possibility that both siderophores act in an indirect way.  相似文献   

9.
The iron uptake systems of pathogenic bacteria provide potential targets for immunological intervention. We have partially purified the high molecular mass, iron-regulated outer membrane proteins (IROMPs) from Pseudomonas aeruginosa and used them to prepare a panel of monoclonal antibodies (mAbs). Five mAbs reacted with an 85 kDa IROMP separated by SDS-PAGE, but gave only low-level binding to whole cells by immunogold electron microscopy. However, iodination of whole cells indicated that the 85 kDa IROMP is surface-exposed. The mAbs were only cross-reactive with clinical isolates representing eight of the 17 International Antigenic Typing Scheme serotypes of P. aeruginosa, suggesting significant heterogeneity with respect to this IROMP.  相似文献   

10.
Iron affects yields of toxin A, alkaline protease, elastase, pyochelin, and pyoverdin in Pseudomonas aeruginosa. Mutants of P. aeruginosa PAO1 resistant to the effect of iron on toxin (toxC) or elastase (elaC) yields were isolated. Two types of mutants were isolated: iron transport and iron regulatory mutants. The toxC regulatory mutants produced toxin A in medium containing iron; however, yields of elastase and alkaline protease remained sensitive to regulation by iron. The elaC regulatory mutants were resistant to the effect of iron on elastase yields, but toxin A and alkaline protease yields were decreased by iron, analogous to the parent strain. These data suggest that toxin A, elastase, and alkaline protease yields can be independently regulated by iron.  相似文献   

11.
Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of 59Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdine-deficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine.  相似文献   

12.
The Pseudomonas aeruginosa FpvA receptor is a TonB-dependent outer membrane transport protein that catalyzes uptake of ferric pyoverdin across the outer membrane. Surprisingly, FpvA expressed in P. aeruginosa grown in an iron-deficient medium copurifies with a ligand X that we have characterized by UV, fluorescence, and mass spectrometry as being iron-free pyoverdin (apo-PaA). PaA was absent from FpvA purified from a PaA-deficient P. aeruginosa strain. The properties of ligand binding in vitro revealed very similar affinities of apo-PaA and ferric-PaA to FpvA. Fluorescence resonance energy transfer was used to study in vitro the formation of the FpvA-PaA-Fe complex in the presence of PaA-Fe or citrate-Fe. The circular dichroism spectrum of FpvA indicated a 57% beta-structure content typical of porins and in agreement with the 3D structures of the siderophore receptors FhuA and FepA. In the absence of the protease's inhibitors, a truncated form of FpvA lacking 87 amino acids at its N-terminus was purified. This truncated form still bound PaA, and its beta-sheet content was conserved. This N-terminal region displays significant homology to the N-terminal periplasmic extensions of FecA from Escherichia coli and PupB from Pseudomonas putida, which were previously shown to be involved in signal transduction. This suggests a similar function for FpvA. The mechanism of iron transport in P. aeruginosa via the pyoverdin pathway is discussed in the light of all these new findings.  相似文献   

13.
Abstract Pseudomonas aeruginosa is known to have an inducible uptake system for the enterobacterial siderophore enterobactin. In this work we have examined iron transport mediated by the biosynthetic precursor 2,3-dihydroxybenzoic acid and N -(2,3-dihydroxybenzoyl)- l -serine, a breakdown product of enterobactin. Iron complexed with 2,3-dihydroxybenzoyl-L-serine was transported into P. aeruginosa IA1 via a transport system which is energy-dependent and iron-repressible. The rate of transport was not altered by growing the cells in the presence of either pyoverdin or pyochelin, which have been shown previously to induce transport via that system. Growth of the cells in the presence of enterobactin did cause an increase in the rate of transport, indicating that the complex can be transported by the inducible enterobactin uptake system, but also that a separate system must exist. In contrast, transport of iron complexed with 2,3-dihydroxybenzoic acid was neither iron-repressible nor strongly energy-dependent, from which we conclude that there must be a novel mode of transport not characteristic of iron-siderophore transport systems.  相似文献   

14.
Pyochelin, a phenolic siderophore of Pseudomonas aeruginosa, was synthesized in three steps from salicylonitrile, L-cysteine, and L-N-methylcysteine. The synthetic product was determined to be identical to natural pyochelin by 1H nuclear magnetic resonance spectroscopy, fast atom bombardment mass spectrometry, chromatographic analysis, and chemical reactivity with FeCl3 and ammoniacal silver nitrate reagent. Synthetic and natural pyochelin promoted bacterial growth in iron-depleted medium and were also found to mediate iron transport by P. aeruginosa to the same levels. Neopyochelin, a stereoisomeric by-product of the synthesis, showed less biological activity than did pyochelin in iron transport assays.  相似文献   

15.
Under iron limitation, Pseudomonas aeruginosa secretes a fluorescent siderophore called pyoverdin, which, after complexing iron, is transported back into the cell via its outer membrane receptor FpvA. Previous studies demonstrated co-purification of FpvA with iron-free PaA and reported similar binding affinities of iron-free pyoverdin and ferric-pyoverdin to purified FpvA. The fluorescence resonance energy transfer between iron-free PaA and the FpvA receptor here reveals the existence of an FpvA-pyoverdin complex in P. aeruginosa in vivo, suggesting that the pyoverdin-loaded FpvA is the normal state of the receptor in the absence of iron. Using tritiated ferric-pyoverdin, it is shown that iron-free PaA binds to the outer membrane but is not taken up into the cell, and that in vitro and, presumably, in vivo ferric-pyoverdin displaces the bound iron-free pyoverdin on FpvA-PaA to form FpvA-PaA-Fe complexes. In vivo, the kinetics of formation of this FpvA-PaA-Fe complex are more than two orders of magnitude faster than in vitro and depend on the presence of TonB. In P. aeruginosa, two tonB genes have been identified (tonB1 and tonB2). TonB1 is directly involved in ferric-pyoverdin uptake, and TonB2 seems to be able partially to replace TonB1 in its role in iron acquisition. However, no effect of TonB1 or TonB2 on the apparent affinity of free pyoverdin to FpvA was observed, and a 17-fold difference was measured between the affinities of the two forms of pyoverdin (PaA and PaA-Fe) to FpvA in the absence of TonB1 or TonB2. The mechanism of iron uptake in P. aeruginosa via the pyoverdin pathway is discussed in view of these new findings.  相似文献   

16.
Pseudomonas aeruginosa produces the phenolic siderophore pyochelin under iron-limiting conditions. In this study, an Fe(III)-pyochelin transport-negative (Fpt-) strain, IA613, was isolated and characterized. 55Fe(III)-pyochelin transport assays determined that no Fe(III)-pyochelin associated with the Fpt- IA613 cells while a significant amount associated with KCN-poisoned Fpt+ cells. A P. aeruginosa genomic library was constructed in the IncP cosmid pLAFR1. The genomic library was mobilized into IA613, and a recombinant cosmid, pCC41, which complemented the Fpt- phenotype of IA613, was isolated. pCC41 contained a 28-kb insert of P. aeruginosa DNA, and the Fpt(-)-complementing region was localized to a 3.6-kb BamHI-EcoRI fragment by deletion and subcloning of the insert. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of IA613 revealed that it lacked a 75-kDa outer membrane protein present in Fpt+ strains. IA613 strains bearing plasmid pRML303, which carries the 3.6-kb BamHI-EcoRI fragment of pCC41, expressed the 75-kDa outer membrane protein and demonstrated a 55Fe(III)-pyochelin transport phenotype identical to that of a wild-type Fpt+ strain. Minicell analysis demonstrated that the 3.6-kb BamHI-EcoRI fragment of pCC41 encoded a protein of approximately 75 kDa. The results presented here and in a previous report (D. E. Heinrichs, L. Young, and K. Poole, Infect. Immun. 59:3680-3684, 1991) lead to the conclusion that the 75-kDa outer membrane protein is the high-affinity receptor for Fe(III)-pyochelin in P. aeruginosa.  相似文献   

17.
Under iron limitation, the opportunistic human pathogen Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted into the extracellular environment, pyochelin complexes ferric ions and delivers them, via the outer membrane receptor FptA, to the bacterial cytoplasm. Extracellular pyochelin also acts as a signalling molecule, inducing the expression of pyochelin biosynthesis and uptake genes by a mechanism involving the AraC-type regulator PchR. We have identified a 32 bp conserved sequence element (PchR-box) in promoter regions of pyochelin-controlled genes and we show that the PchR-box in the pchR-pchDCBA intergenic region is essential for the induction of the pyochelin biosynthetic operon pchDCBA and the repression of the divergently transcribed pchR gene. PchR was purified as a fusion with maltose-binding protein (MBP). Mobility shift assays demonstrated specific binding of MBP-PchR to the PchR-box in the presence, but not in the absence of pyochelin and iron. PchR-box mutations that interfered with pyochelin-dependent regulation in vivo, also affected pyochelin-dependent PchR-box recognition in vitro. We conclude that pyochelin, probably in its iron-loaded state, is the intracellular effector required for PchR-mediated regulation. The fact that extracellular pyochelin triggers this regulation suggests that the siderophore can enter the cytoplasm.  相似文献   

18.
19.
This study provides new information on the Fe uptake system capable of supporting growth of the organism. Pseudomonas fluorescens isolated from the rhizosphere of barley, a gramineous plant, produced a siderophore under iron-limiting conditions. Its chemical structure was identified as pyochelin, on the basis of 1H and 13C NMR data of a stable methyl ester derivative. The same iron-limiting conditions induced a new set of outer membrane proteins (75 and 55 kDa), consistent with a siderophore-mediated iron-uptake system.  相似文献   

20.
The possession of specialized iron transport systems may be crucial for bacteria to override the iron limitation imposed by the host or the environment. One of the most commonly found strategies evolved by microorganisms is the production of siderophores, low-molecular-weight iron chelators that have very high constants of association for their complexes with iron. Thus, siderophores act as extracellular solubilizing agents for iron from minerals or organic compounds, such as transferrin and lactoferrin in the host vertebrate, under conditions of iron limitation. Transport of iron into the cell cytosol is mediated by specific membrane receptor and transport systems which recognize the iron-siderophore complexes. In this review I have analyzed in detail three siderophore-mediated iron uptake systems: the plasmid-encoded anguibactin system of Vibrio anguillarum, the aerobactin-mediated iron assimilation system present in the pColV-K30 plasmid and in the chromosomes of many enteric bacteria, and the chromosomally encoded enterobactin iron uptake system, found in Escherichia coli, Shigella spp., Salmonella spp., and other members of the family Enterobacteriaceae. The siderophore systems encoded by Pseudomonas aeruginosa, namely, pyochelin and pyoverdin, as well as the siderophore amonabactin, specified by Aeromonas hydrophila, are also discussed. The potential role of siderophore-mediated systems as virulence determinants in the specific host-bacteria interaction leading to disease is also analyzed with respect to the influence of these systems in the expression of other factors, such as toxins, in the bacterial virulence repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号